# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement from datetime import datetime import talib.abstract as ta from pandas import DataFrame import freqtrade.vendor.qtpylib.indicators as qtpylib from freqtrade.persistence import Trade from freqtrade.strategy import ( BooleanParameter, DecimalParameter, IntParameter, IStrategy, RealParameter, ) class StrategyTestV3(IStrategy): """ Strategy used by tests freqtrade bot. Please do not modify this strategy, it's intended for internal use only. Please look at the SampleStrategy in the user_data/strategy directory or strategy repository https://github.com/freqtrade/freqtrade-strategies for samples and inspiration. """ INTERFACE_VERSION = 3 # Minimal ROI designed for the strategy minimal_roi = {"40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04} # Optimal max_open_trades for the strategy max_open_trades = -1 # Optimal stoploss designed for the strategy stoploss = -0.10 # Optimal timeframe for the strategy timeframe = "5m" # Optional order type mapping order_types = { "entry": "limit", "exit": "limit", "stoploss": "limit", "stoploss_on_exchange": False, } # Number of candles the strategy requires before producing valid signals startup_candle_count: int = 20 # Optional time in force for orders order_time_in_force = { "entry": "gtc", "exit": "gtc", } buy_params = { "buy_rsi": 35, # Intentionally not specified, so "default" is tested # 'buy_plusdi': 0.4 } sell_params = {"sell_rsi": 74, "sell_minusdi": 0.4} buy_rsi = IntParameter([0, 50], default=30, space="buy") buy_plusdi = RealParameter(low=0, high=1, default=0.5, space="buy") sell_rsi = IntParameter(low=50, high=100, default=70, space="sell") sell_minusdi = DecimalParameter( low=0, high=1, default=0.5001, decimals=3, space="sell", load=False ) protection_enabled = BooleanParameter(default=True) protection_cooldown_lookback = IntParameter([0, 50], default=30) # TODO: Can this work with protection tests? (replace HyperoptableStrategy implicitly ... ) @property def protections(self): prot = [] if self.protection_enabled.value: # Workaround to simplify tests. This will not work in real scenarios. prot = self.config.get("_strategy_protections", {}) return prot bot_started = False def bot_start(self): self.bot_started = True def informative_pairs(self): return [] def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # Momentum Indicator # ------------------------------------ # ADX dataframe["adx"] = ta.ADX(dataframe) # MACD macd = ta.MACD(dataframe) dataframe["macd"] = macd["macd"] dataframe["macdsignal"] = macd["macdsignal"] dataframe["macdhist"] = macd["macdhist"] # Minus Directional Indicator / Movement dataframe["minus_di"] = ta.MINUS_DI(dataframe) # Plus Directional Indicator / Movement dataframe["plus_di"] = ta.PLUS_DI(dataframe) # RSI dataframe["rsi"] = ta.RSI(dataframe) # Stoch fast stoch_fast = ta.STOCHF(dataframe) dataframe["fastd"] = stoch_fast["fastd"] dataframe["fastk"] = stoch_fast["fastk"] # Bollinger bands bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) dataframe["bb_lowerband"] = bollinger["lower"] dataframe["bb_middleband"] = bollinger["mid"] dataframe["bb_upperband"] = bollinger["upper"] # EMA - Exponential Moving Average dataframe["ema10"] = ta.EMA(dataframe, timeperiod=10) return dataframe def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( (dataframe["rsi"] < self.buy_rsi.value) & (dataframe["fastd"] < 35) & (dataframe["adx"] > 30) & (dataframe["plus_di"] > self.buy_plusdi.value) ) | ((dataframe["adx"] > 65) & (dataframe["plus_di"] > self.buy_plusdi.value)), "enter_long", ] = 1 dataframe.loc[ (qtpylib.crossed_below(dataframe["rsi"], self.sell_rsi.value)), ("enter_short", "enter_tag"), ] = (1, "short_Tag") return dataframe def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( ( (qtpylib.crossed_above(dataframe["rsi"], self.sell_rsi.value)) | (qtpylib.crossed_above(dataframe["fastd"], 70)) ) & (dataframe["adx"] > 10) & (dataframe["minus_di"] > 0) ) | ((dataframe["adx"] > 70) & (dataframe["minus_di"] > self.sell_minusdi.value)), "exit_long", ] = 1 dataframe.loc[ (qtpylib.crossed_above(dataframe["rsi"], self.buy_rsi.value)), ("exit_short", "exit_tag"), ] = (1, "short_Tag") return dataframe def leverage( self, pair: str, current_time: datetime, current_rate: float, proposed_leverage: float, max_leverage: float, entry_tag: str | None, side: str, **kwargs, ) -> float: # Return 3.0 in all cases. # Bot-logic must make sure it's an allowed leverage and eventually adjust accordingly. return 3.0 def adjust_trade_position( self, trade: Trade, current_time: datetime, current_rate: float, current_profit: float, min_stake: float | None, max_stake: float, current_entry_rate: float, current_exit_rate: float, current_entry_profit: float, current_exit_profit: float, **kwargs, ) -> float | None: if current_profit < -0.0075: orders = trade.select_filled_orders(trade.entry_side) return round(orders[0].stake_amount, 0) return None class StrategyTestV3Futures(StrategyTestV3): can_short = True