import platform import sys from copy import deepcopy from pathlib import Path from typing import Any, Dict from unittest.mock import MagicMock import pytest from freqtrade.configuration import TimeRange from freqtrade.data.dataprovider import DataProvider from freqtrade.freqai.data_drawer import FreqaiDataDrawer from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.resolvers import StrategyResolver from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver from tests.conftest import get_patched_exchange def is_py12() -> bool: return sys.version_info >= (3, 12) def is_mac() -> bool: machine = platform.system() return "Darwin" in machine def is_arm() -> bool: machine = platform.machine() return "arm" in machine or "aarch64" in machine @pytest.fixture(autouse=True) def patch_torch_initlogs(mocker) -> None: if is_mac(): # Mock torch import completely import sys import types module_name = "torch" mocked_module = types.ModuleType(module_name) sys.modules[module_name] = mocked_module else: mocker.patch("torch._logging._init_logs") @pytest.fixture(scope="function") def freqai_conf(default_conf, tmp_path): freqaiconf = deepcopy(default_conf) freqaiconf.update( { "datadir": Path(default_conf["datadir"]), "strategy": "freqai_test_strat", "user_data_dir": tmp_path, "strategy-path": "freqtrade/tests/strategy/strats", "freqaimodel": "LightGBMRegressor", "freqaimodel_path": "freqai/prediction_models", "timerange": "20180110-20180115", "freqai": { "enabled": True, "purge_old_models": 2, "train_period_days": 2, "backtest_period_days": 10, "live_retrain_hours": 0, "expiration_hours": 1, "identifier": "unique-id100", "live_trained_timestamp": 0, "data_kitchen_thread_count": 2, "activate_tensorboard": False, "feature_parameters": { "include_timeframes": ["5m"], "include_corr_pairlist": ["ADA/BTC"], "label_period_candles": 20, "include_shifted_candles": 1, "DI_threshold": 0.9, "weight_factor": 0.9, "principal_component_analysis": False, "use_SVM_to_remove_outliers": True, "stratify_training_data": 0, "indicator_periods_candles": [10], "shuffle_after_split": False, "buffer_train_data_candles": 0, }, "data_split_parameters": {"test_size": 0.33, "shuffle": False}, "model_training_parameters": {"n_estimators": 100}, }, "config_files": [Path("config_examples", "config_freqai.example.json")], } ) freqaiconf["exchange"].update({"pair_whitelist": ["ADA/BTC", "DASH/BTC", "ETH/BTC", "LTC/BTC"]}) return freqaiconf def make_rl_config(conf): conf.update({"strategy": "freqai_rl_test_strat"}) conf["freqai"].update( {"model_training_parameters": {"learning_rate": 0.00025, "gamma": 0.9, "verbose": 1}} ) conf["freqai"]["rl_config"] = { "train_cycles": 1, "thread_count": 2, "max_trade_duration_candles": 300, "model_type": "PPO", "policy_type": "MlpPolicy", "max_training_drawdown_pct": 0.5, "net_arch": [32, 32], "model_reward_parameters": {"rr": 1, "profit_aim": 0.02, "win_reward_factor": 2}, "drop_ohlc_from_features": False, } return conf def mock_pytorch_mlp_model_training_parameters() -> Dict[str, Any]: return { "learning_rate": 3e-4, "trainer_kwargs": { "n_steps": None, "batch_size": 64, "n_epochs": 1, }, "model_kwargs": { "hidden_dim": 32, "dropout_percent": 0.2, "n_layer": 1, }, } def get_patched_data_kitchen(mocker, freqaiconf): dk = FreqaiDataKitchen(freqaiconf) return dk def get_patched_data_drawer(mocker, freqaiconf): # dd = mocker.patch('freqtrade.freqai.data_drawer', MagicMock()) dd = FreqaiDataDrawer(freqaiconf) return dd def get_patched_freqai_strategy(mocker, freqaiconf): strategy = StrategyResolver.load_strategy(freqaiconf) strategy.ft_bot_start() return strategy def get_patched_freqaimodel(mocker, freqaiconf): freqaimodel = FreqaiModelResolver.load_freqaimodel(freqaiconf) return freqaimodel def make_unfiltered_dataframe(mocker, freqai_conf): freqai_conf.update({"timerange": "20180110-20180130"}) strategy = get_patched_freqai_strategy(mocker, freqai_conf) exchange = get_patched_exchange(mocker, freqai_conf) strategy.dp = DataProvider(freqai_conf, exchange) strategy.freqai_info = freqai_conf.get("freqai", {}) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqai_conf) freqai.dk.live = True freqai.dk.pair = "ADA/BTC" data_load_timerange = TimeRange.parse_timerange("20180110-20180130") freqai.dd.load_all_pair_histories(data_load_timerange, freqai.dk) freqai.dd.pair_dict = MagicMock() new_timerange = TimeRange.parse_timerange("20180120-20180130") corr_dataframes, base_dataframes = freqai.dd.get_base_and_corr_dataframes( data_load_timerange, freqai.dk.pair, freqai.dk ) unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators( strategy, corr_dataframes, base_dataframes, freqai.dk.pair ) for i in range(5): unfiltered_dataframe[f"constant_{i}"] = i unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe) return freqai, unfiltered_dataframe def make_data_dictionary(mocker, freqai_conf): freqai_conf.update({"timerange": "20180110-20180130"}) strategy = get_patched_freqai_strategy(mocker, freqai_conf) exchange = get_patched_exchange(mocker, freqai_conf) strategy.dp = DataProvider(freqai_conf, exchange) strategy.freqai_info = freqai_conf.get("freqai", {}) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqai_conf) freqai.dk.live = True freqai.dk.pair = "ADA/BTC" data_load_timerange = TimeRange.parse_timerange("20180110-20180130") freqai.dd.load_all_pair_histories(data_load_timerange, freqai.dk) freqai.dd.pair_dict = MagicMock() new_timerange = TimeRange.parse_timerange("20180120-20180130") corr_dataframes, base_dataframes = freqai.dd.get_base_and_corr_dataframes( data_load_timerange, freqai.dk.pair, freqai.dk ) unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators( strategy, corr_dataframes, base_dataframes, freqai.dk.pair ) unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe) freqai.dk.find_features(unfiltered_dataframe) features_filtered, labels_filtered = freqai.dk.filter_features( unfiltered_dataframe, freqai.dk.training_features_list, freqai.dk.label_list, training_filter=True, ) data_dictionary = freqai.dk.make_train_test_datasets(features_filtered, labels_filtered) data_dictionary = freqai.dk.normalize_data(data_dictionary) return freqai def get_freqai_live_analyzed_dataframe(mocker, freqaiconf): strategy = get_patched_freqai_strategy(mocker, freqaiconf) exchange = get_patched_exchange(mocker, freqaiconf) strategy.dp = DataProvider(freqaiconf, exchange) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd) timerange = TimeRange.parse_timerange("20180110-20180114") freqai.dk.load_all_pair_histories(timerange) strategy.analyze_pair("ADA/BTC", "5m") return strategy.dp.get_analyzed_dataframe("ADA/BTC", "5m") def get_freqai_analyzed_dataframe(mocker, freqaiconf): strategy = get_patched_freqai_strategy(mocker, freqaiconf) exchange = get_patched_exchange(mocker, freqaiconf) strategy.dp = DataProvider(freqaiconf, exchange) strategy.freqai_info = freqaiconf.get("freqai", {}) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd) timerange = TimeRange.parse_timerange("20180110-20180114") freqai.dk.load_all_pair_histories(timerange) sub_timerange = TimeRange.parse_timerange("20180111-20180114") corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC") return freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC") def get_ready_to_train(mocker, freqaiconf): strategy = get_patched_freqai_strategy(mocker, freqaiconf) exchange = get_patched_exchange(mocker, freqaiconf) strategy.dp = DataProvider(freqaiconf, exchange) strategy.freqai_info = freqaiconf.get("freqai", {}) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd) timerange = TimeRange.parse_timerange("20180110-20180114") freqai.dk.load_all_pair_histories(timerange) sub_timerange = TimeRange.parse_timerange("20180111-20180114") corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC") return corr_df, base_df, freqai, strategy