# pragma pylint: disable=missing-docstring import json import logging import os from functools import reduce import pytest import arrow from pandas import DataFrame import hyperopt.pyll.stochastic from hyperopt import fmin, tpe, hp from freqtrade.analyze import analyze_ticker from freqtrade.main import should_sell from freqtrade.persistence import Trade logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot def print_results(results): print('Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format( len(results.index), results.profit.mean() * 100.0, results.profit.sum(), results.duration.mean() * 5 )) @pytest.fixture def pairs(): return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay', 'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc'] @pytest.fixture def conf(): return { "minimal_roi": { "50": 0.0, "40": 0.01, "30": 0.02, "0": 0.045 }, "stoploss": -0.40 } def backtest(conf, pairs, mocker, buy_strategy): trades = [] mocker.patch.dict('freqtrade.main._CONF', conf) for pair in pairs: with open('freqtrade/tests/testdata/'+pair+'.json') as data_file: data = json.load(data_file) mocker.patch('freqtrade.analyze.get_ticker_history', return_value=data) mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00')) mocker.patch('freqtrade.analyze.populate_buy_trend', side_effect=buy_strategy) ticker = analyze_ticker(pair) # for each buy point for index, row in ticker[ticker.buy == 1].iterrows(): trade = Trade( open_rate=row['close'], open_date=arrow.get(row['date']).datetime, amount=1, ) # calculate win/lose forwards from buy point for index2, row2 in ticker[index:].iterrows(): if should_sell(trade, row2['close'], arrow.get(row2['date']).datetime): current_profit = (row2['close'] - trade.open_rate) / trade.open_rate trades.append((pair, current_profit, index2 - index)) break labels = ['currency', 'profit', 'duration'] results = DataFrame.from_records(trades, columns=labels) print_results(results) if len(results.index) < 800: return 0 return results.profit.sum() / results.duration.mean() def buy_strategy_generator(params): print(params) def populate_buy_trend(dataframe: DataFrame) -> DataFrame: conditions = [] conditions.append(dataframe['close'] < dataframe['sma']) conditions.append(dataframe['tema'] <= dataframe['blower']) if params['mfi']['enabled']: conditions.append(dataframe['mfi'] < params['mfi']['value']) if params['fastd']['enabled']: conditions.append(dataframe['fastd'] < params['fastd']['value']) if params['adx']['enabled']: conditions.append(dataframe['adx'] > params['adx']['value']) dataframe.loc[ reduce(lambda x, y: x & y, conditions), 'buy'] = 1 dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close'] return dataframe return populate_buy_trend @pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set") def test_hyperopt(conf, pairs, mocker): def optimizer(params): return backtest(conf, pairs, mocker, buy_strategy_generator(params)) space = { 'mfi': hp.choice('mfi', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('mfi-value', 10, 50)} ]), 'fastd': hp.choice('fastd', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('fastd-value', 10, 50)} ]), 'adx': hp.choice('adx', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('adx-value', 10, 50)} ]), } # print(hyperopt.pyll.stochastic.sample(space)) print(fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=2))