import logging from pathlib import Path from typing import Any from xgboost.callback import TrainingCallback logger = logging.getLogger(__name__) class BaseTensorboardLogger: def __init__(self, logdir: Path, activate: bool = True): logger.warning("Tensorboard is not installed, no logs will be written." "Ensure torch is installed, or use the torch/RL docker images") def log_scalar(self, tag: str, scalar_value: Any, step: int): return def close(self): return class BaseTensorBoardCallback(TrainingCallback): def __init__(self, logdir: Path, activate: bool = True): logger.warning("Tensorboard is not installed, no logs will be written." "Ensure torch is installed, or use the torch/RL docker images") def after_iteration( self, model, epoch: int, evals_log: TrainingCallback.EvalsLog ) -> bool: return False def after_training(self, model): return model