# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument import random from pathlib import Path from unittest.mock import MagicMock, PropertyMock import numpy as np import pandas as pd import pytest from arrow import Arrow from freqtrade import constants from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting from freqtrade.configuration import TimeRange from freqtrade.data import history from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi from freqtrade.data.converter import clean_ohlcv_dataframe from freqtrade.data.dataprovider import DataProvider from freqtrade.data.history import get_timerange from freqtrade.exceptions import DependencyException, OperationalException from freqtrade.optimize.backtesting import Backtesting from freqtrade.resolvers import StrategyResolver from freqtrade.state import RunMode from freqtrade.strategy.interface import SellType from tests.conftest import (get_args, log_has, log_has_re, patch_exchange, patched_configuration_load_config_file) ORDER_TYPES = [ { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': False }, { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': True }] def trim_dictlist(dict_list, num): new = {} for pair, pair_data in dict_list.items(): new[pair] = pair_data[num:].reset_index() return new def load_data_test(what, testdatadir): timerange = TimeRange.parse_timerange('1510694220-1510700340') data = history.load_pair_history(pair='UNITTEST/BTC', datadir=testdatadir, timeframe='1m', timerange=timerange, drop_incomplete=False, fill_up_missing=False) base = 0.001 if what == 'raise': data.loc[:, 'open'] = data.index * base data.loc[:, 'high'] = data.index * base + 0.0001 data.loc[:, 'low'] = data.index * base - 0.0001 data.loc[:, 'close'] = data.index * base if what == 'lower': data.loc[:, 'open'] = 1 - data.index * base data.loc[:, 'high'] = 1 - data.index * base + 0.0001 data.loc[:, 'low'] = 1 - data.index * base - 0.0001 data.loc[:, 'close'] = 1 - data.index * base if what == 'sine': hz = 0.1 # frequency data.loc[:, 'open'] = np.sin(data.index * hz) / 1000 + base data.loc[:, 'high'] = np.sin(data.index * hz) / 1000 + base + 0.0001 data.loc[:, 'low'] = np.sin(data.index * hz) / 1000 + base - 0.0001 data.loc[:, 'close'] = np.sin(data.index * hz) / 1000 + base return {'UNITTEST/BTC': clean_ohlcv_dataframe(data, timeframe='1m', pair='UNITTEST/BTC', fill_missing=True)} def simple_backtest(config, contour, mocker, testdatadir) -> None: patch_exchange(mocker) config['timeframe'] = '1m' backtesting = Backtesting(config) data = load_data_test(contour, testdatadir) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) assert isinstance(processed, dict) results = backtesting.backtest( processed=processed, stake_amount=config['stake_amount'], start_date=min_date, end_date=max_date, max_open_trades=1, position_stacking=False, enable_protections=config.get('enable_protections', False), ) # results :: return results # FIX: fixturize this? def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'): data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair]) data = trim_dictlist(data, -201) patch_exchange(mocker) backtesting = Backtesting(conf) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) return { 'processed': processed, 'stake_amount': conf['stake_amount'], 'start_date': min_date, 'end_date': max_date, 'max_open_trades': 10, 'position_stacking': False, } def _trend(signals, buy_value, sell_value): n = len(signals['low']) buy = np.zeros(n) sell = np.zeros(n) for i in range(0, len(signals['buy'])): if random.random() > 0.5: # Both buy and sell signals at same timeframe buy[i] = buy_value sell[i] = sell_value signals['buy'] = buy signals['sell'] = sell return signals def _trend_alternate(dataframe=None, metadata=None): signals = dataframe low = signals['low'] n = len(low) buy = np.zeros(n) sell = np.zeros(n) for i in range(0, len(buy)): if i % 2 == 0: buy[i] = 1 else: sell[i] = 1 signals['buy'] = buy signals['sell'] = sell return dataframe # Unit tests def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None: patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST) assert 'max_open_trades' in config assert 'stake_currency' in config assert 'stake_amount' in config assert 'exchange' in config assert 'pair_whitelist' in config['exchange'] assert 'datadir' in config assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog) assert 'timeframe' in config assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog) assert 'position_stacking' not in config assert not log_has('Parameter --enable-position-stacking detected ...', caplog) assert 'timerange' not in config assert 'export' not in config assert 'runmode' in config assert config['runmode'] == RunMode.BACKTEST def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None: patched_configuration_load_config_file(mocker, default_conf) mocker.patch( 'freqtrade.configuration.configuration.create_datadir', lambda c, x: x ) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', '--datadir', '/foo/bar', '--timeframe', '1m', '--enable-position-stacking', '--disable-max-market-positions', '--timerange', ':100', '--export', '/bar/foo', '--export-filename', 'foo_bar.json', '--fee', '0', ] config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST) assert 'max_open_trades' in config assert 'stake_currency' in config assert 'stake_amount' in config assert 'exchange' in config assert 'pair_whitelist' in config['exchange'] assert 'datadir' in config assert config['runmode'] == RunMode.BACKTEST assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog) assert 'timeframe' in config assert log_has('Parameter -i/--timeframe detected ... Using timeframe: 1m ...', caplog) assert 'position_stacking' in config assert log_has('Parameter --enable-position-stacking detected ...', caplog) assert 'use_max_market_positions' in config assert log_has('Parameter --disable-max-market-positions detected ...', caplog) assert log_has('max_open_trades set to unlimited ...', caplog) assert 'timerange' in config assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog) assert 'export' in config assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog) assert 'exportfilename' in config assert isinstance(config['exportfilename'], Path) assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog) assert 'fee' in config assert log_has('Parameter --fee detected, setting fee to: {} ...'.format(config['fee']), caplog) def test_setup_optimize_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None: default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] with pytest.raises(DependencyException, match=r'.`stake_amount`.*'): setup_optimize_configuration(get_args(args), RunMode.BACKTEST) def test_start(mocker, fee, default_conf, caplog) -> None: start_mock = MagicMock() mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] pargs = get_args(args) start_backtesting(pargs) assert log_has('Starting freqtrade in Backtesting mode', caplog) assert start_mock.call_count == 1 @pytest.mark.parametrize("order_types", ORDER_TYPES) def test_backtesting_init(mocker, default_conf, order_types) -> None: """ Check that stoploss_on_exchange is set to False while backtesting since backtesting assumes a perfect stoploss anyway. """ default_conf["order_types"] = order_types patch_exchange(mocker) get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) backtesting = Backtesting(default_conf) assert backtesting.config == default_conf assert backtesting.timeframe == '5m' assert callable(backtesting.strategy.ohlcvdata_to_dataframe) assert callable(backtesting.strategy.advise_buy) assert callable(backtesting.strategy.advise_sell) assert isinstance(backtesting.strategy.dp, DataProvider) get_fee.assert_called() assert backtesting.fee == 0.5 assert not backtesting.strategy.order_types["stoploss_on_exchange"] def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None: patch_exchange(mocker) del default_conf['timeframe'] default_conf['strategy_list'] = ['DefaultStrategy', 'SampleStrategy'] mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) with pytest.raises(OperationalException): Backtesting(default_conf) log_has("Ticker-interval needs to be set in either configuration " "or as cli argument `--ticker-interval 5m`", caplog) def test_data_with_fee(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) default_conf['fee'] = 0.1234 fee_mock = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) backtesting = Backtesting(default_conf) assert backtesting.fee == 0.1234 assert fee_mock.call_count == 0 default_conf['fee'] = 0.0 backtesting = Backtesting(default_conf) assert backtesting.fee == 0.0 assert fee_mock.call_count == 0 def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) timerange = TimeRange.parse_timerange('1510694220-1510700340') data = history.load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange, fill_up_missing=True) backtesting = Backtesting(default_conf) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) assert len(processed['UNITTEST/BTC']) == 102 # Load strategy to compare the result between Backtesting function and strategy are the same default_conf.update({'strategy': 'DefaultStrategy'}) strategy = StrategyResolver.load_strategy(default_conf) processed2 = strategy.ohlcvdata_to_dataframe(data) assert processed['UNITTEST/BTC'].equals(processed2['UNITTEST/BTC']) def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None: def get_timerange(input1): return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats') mocker.patch('freqtrade.optimize.backtesting.show_backtest_results') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) default_conf['timeframe'] = '1m' default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '-1510694220' backtesting = Backtesting(default_conf) backtesting.start() # check the logs, that will contain the backtest result exists = [ 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:59:00 (0 days)..' ] for line in exists: assert log_has(line, caplog) assert backtesting.strategy.dp._pairlists is not None def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None: def get_timerange(input1): return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59) mocker.patch('freqtrade.data.history.history_utils.load_pair_history', MagicMock(return_value=pd.DataFrame())) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) default_conf['timeframe'] = "1m" default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '20180101-20180102' backtesting = Backtesting(default_conf) with pytest.raises(OperationalException, match='No data found. Terminating.'): backtesting.start() def test_backtesting_no_pair_left(default_conf, mocker, caplog, testdatadir) -> None: mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True)) mocker.patch('freqtrade.data.history.history_utils.load_pair_history', MagicMock(return_value=pd.DataFrame())) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=[])) default_conf['timeframe'] = "1m" default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '20180101-20180102' with pytest.raises(OperationalException, match='No pair in whitelist.'): Backtesting(default_conf) default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}] with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'): Backtesting(default_conf) def test_backtesting_pairlist_list(default_conf, mocker, caplog, testdatadir, tickers) -> None: mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True)) mocker.patch('freqtrade.exchange.Exchange.get_tickers', tickers) mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['XRP/BTC'])) mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist') default_conf['ticker_interval'] = "1m" default_conf['datadir'] = testdatadir default_conf['export'] = None # Use stoploss from strategy del default_conf['stoploss'] default_conf['timerange'] = '20180101-20180102' default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}] with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'): Backtesting(default_conf) default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PerformanceFilter"}] with pytest.raises(OperationalException, match='PerformanceFilter not allowed for backtesting.'): Backtesting(default_conf) default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PrecisionFilter"}, ] Backtesting(default_conf) # Multiple strategies default_conf['strategy_list'] = ['DefaultStrategy', 'TestStrategyLegacy'] with pytest.raises(OperationalException, match='PrecisionFilter not allowed for backtesting multiple strategies.'): Backtesting(default_conf) def test_backtest(default_conf, fee, mocker, testdatadir) -> None: default_conf['ask_strategy']['use_sell_signal'] = False mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) backtesting = Backtesting(default_conf) pair = 'UNITTEST/BTC' timerange = TimeRange('date', None, 1517227800, 0) data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'], timerange=timerange) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) results = backtesting.backtest( processed=processed, stake_amount=default_conf['stake_amount'], start_date=min_date, end_date=max_date, max_open_trades=10, position_stacking=False, ) assert not results.empty assert len(results) == 2 expected = pd.DataFrame( {'pair': [pair, pair], 'profit_percent': [0.0, 0.0], 'profit_abs': [0.0, 0.0], 'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime, Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True ), 'open_rate': [0.104445, 0.10302485], 'open_fee': [0.0025, 0.0025], 'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime, Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True), 'close_rate': [0.104969, 0.103541], 'close_fee': [0.0025, 0.0025], 'amount': [0.00957442, 0.0097064], 'trade_duration': [235, 40], 'open_at_end': [False, False], 'sell_reason': [SellType.ROI, SellType.ROI] }) pd.testing.assert_frame_equal(results, expected) data_pair = processed[pair] for _, t in results.iterrows(): ln = data_pair.loc[data_pair["date"] == t["open_date"]] # Check open trade rate alignes to open rate assert ln is not None assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6) # check close trade rate alignes to close rate or is between high and low ln = data_pair.loc[data_pair["date"] == t["close_date"]] assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or round(ln.iloc[0]["low"], 6) < round( t["close_rate"], 6) < round(ln.iloc[0]["high"], 6)) def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None: default_conf['ask_strategy']['use_sell_signal'] = False mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) backtesting = Backtesting(default_conf) # Run a backtesting for an exiting 1min timeframe timerange = TimeRange.parse_timerange('1510688220-1510700340') data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'], timerange=timerange) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) results = backtesting.backtest( processed=processed, stake_amount=default_conf['stake_amount'], start_date=min_date, end_date=max_date, max_open_trades=1, position_stacking=False, ) assert not results.empty assert len(results) == 1 def test_processed(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) backtesting = Backtesting(default_conf) dict_of_tickerrows = load_data_test('raise', testdatadir) dataframes = backtesting.strategy.ohlcvdata_to_dataframe(dict_of_tickerrows) dataframe = dataframes['UNITTEST/BTC'] cols = dataframe.columns # assert the dataframe got some of the indicator columns for col in ['close', 'high', 'low', 'open', 'date', 'ema10', 'rsi', 'fastd', 'plus_di']: assert col in cols def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None: # While this test IS a copy of test_backtest_pricecontours, it's needed to ensure # results do not carry-over to the next run, which is not given by using parametrize. default_conf['protections'] = [ { "method": "CooldownPeriod", "stop_duration": 3, }] default_conf['enable_protections'] = True mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) tests = [ ['sine', 9], ['raise', 10], ['lower', 0], ['sine', 9], ['raise', 10], ] # While buy-signals are unrealistic, running backtesting # over and over again should not cause different results for [contour, numres] in tests: assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == numres @pytest.mark.parametrize('protections,contour,expected', [ (None, 'sine', 35), (None, 'raise', 19), (None, 'lower', 0), (None, 'sine', 35), (None, 'raise', 19), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'lower', 0), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10), ]) def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir, protections, contour, expected) -> None: if protections: default_conf['protections'] = protections default_conf['enable_protections'] = True mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) # While buy-signals are unrealistic, running backtesting # over and over again should not cause different results assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == expected def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir): # Override the default buy trend function in our default_strategy def fun(dataframe=None, pair=None): buy_value = 1 sell_value = 1 return _trend(dataframe, buy_value, sell_value) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir) backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = fun # Override backtesting.strategy.advise_sell = fun # Override results = backtesting.backtest(**backtest_conf) assert results.empty def test_backtest_only_sell(mocker, default_conf, testdatadir): # Override the default buy trend function in our default_strategy def fun(dataframe=None, pair=None): buy_value = 0 sell_value = 1 return _trend(dataframe, buy_value, sell_value) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir) backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = fun # Override backtesting.strategy.advise_sell = fun # Override results = backtesting.backtest(**backtest_conf) assert results.empty def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir): mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC', datadir=testdatadir) default_conf['timeframe'] = '1m' backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = _trend_alternate # Override backtesting.strategy.advise_sell = _trend_alternate # Override results = backtesting.backtest(**backtest_conf) # 200 candles in backtest data # won't buy on first (shifted by 1) # 100 buys signals assert len(results) == 100 # One trade was force-closed at the end assert len(results.loc[results.open_at_end]) == 0 @pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC']) @pytest.mark.parametrize("tres", [0, 20, 30]) def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir): def _trend_alternate_hold(dataframe=None, metadata=None): """ Buy every xth candle - sell every other xth -2 (hold on to pairs a bit) """ if metadata['pair'] in ('ETH/BTC', 'LTC/BTC'): multi = 20 else: multi = 18 dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0) dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0) return dataframe mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC'] data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=pairs) # Only use 500 lines to increase performance data = trim_dictlist(data, -500) # Remove data for one pair from the beginning of the data data[pair] = data[pair][tres:].reset_index() default_conf['timeframe'] = '5m' backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = _trend_alternate_hold # Override backtesting.strategy.advise_sell = _trend_alternate_hold # Override processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) backtest_conf = { 'processed': processed, 'stake_amount': default_conf['stake_amount'], 'start_date': min_date, 'end_date': max_date, 'max_open_trades': 3, 'position_stacking': False, } results = backtesting.backtest(**backtest_conf) # Make sure we have parallel trades assert len(evaluate_result_multi(results, '5m', 2)) > 0 # make sure we don't have trades with more than configured max_open_trades assert len(evaluate_result_multi(results, '5m', 3)) == 0 backtest_conf = { 'processed': processed, 'stake_amount': default_conf['stake_amount'], 'start_date': min_date, 'end_date': max_date, 'max_open_trades': 1, 'position_stacking': False, } results = backtesting.backtest(**backtest_conf) assert len(evaluate_result_multi(results, '5m', 1)) == 0 def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir): patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats') mocker.patch('freqtrade.optimize.backtesting.show_backtest_results') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', '--datadir', str(testdatadir), '--timeframe', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions' ] args = get_args(args) start_backtesting(args) # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--timeframe detected ... Using timeframe: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Loading data from 2017-11-14 20:57:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Parameter --enable-position-stacking detected ...' ] for line in exists: assert log_has(line, caplog) @pytest.mark.filterwarnings("ignore:deprecated") def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir): patch_exchange(mocker) backtestmock = MagicMock(return_value=pd.DataFrame(columns=BT_DATA_COLUMNS + ['profit_abs'])) mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock) text_table_mock = MagicMock() sell_reason_mock = MagicMock() strattable_mock = MagicMock() strat_summary = MagicMock() mocker.patch.multiple('freqtrade.optimize.optimize_reports', text_table_bt_results=text_table_mock, text_table_strategy=strattable_mock, generate_pair_metrics=MagicMock(), generate_sell_reason_stats=sell_reason_mock, generate_strategy_metrics=strat_summary, generate_daily_stats=MagicMock(), ) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--datadir', str(testdatadir), '--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'), '--timeframe', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions', '--strategy-list', 'DefaultStrategy', 'TestStrategyLegacy', ] args = get_args(args) start_backtesting(args) # 2 backtests, 4 tables assert backtestmock.call_count == 2 assert text_table_mock.call_count == 4 assert strattable_mock.call_count == 1 assert sell_reason_mock.call_count == 2 assert strat_summary.call_count == 1 # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--timeframe detected ... Using timeframe: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Loading data from 2017-11-14 20:57:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Parameter --enable-position-stacking detected ...', 'Running backtesting for Strategy DefaultStrategy', 'Running backtesting for Strategy TestStrategyLegacy', ] for line in exists: assert log_has(line, caplog) @pytest.mark.filterwarnings("ignore:deprecated") def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys): patch_exchange(mocker) backtestmock = MagicMock(side_effect=[ pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'], 'profit_percent': [0.0, 0.0], 'profit_abs': [0.0, 0.0], 'open_date': pd.to_datetime(['2018-01-29 18:40:00', '2018-01-30 03:30:00', ], utc=True ), 'close_date': pd.to_datetime(['2018-01-29 20:45:00', '2018-01-30 05:35:00', ], utc=True), 'trade_duration': [235, 40], 'open_at_end': [False, False], 'open_rate': [0.104445, 0.10302485], 'close_rate': [0.104969, 0.103541], 'sell_reason': [SellType.ROI, SellType.ROI] }), pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'], 'profit_percent': [0.03, 0.01, 0.1], 'profit_abs': [0.01, 0.02, 0.2], 'open_date': pd.to_datetime(['2018-01-29 18:40:00', '2018-01-30 03:30:00', '2018-01-30 05:30:00'], utc=True ), 'close_date': pd.to_datetime(['2018-01-29 20:45:00', '2018-01-30 05:35:00', '2018-01-30 08:30:00'], utc=True), 'trade_duration': [47, 40, 20], 'open_at_end': [False, False, False], 'open_rate': [0.104445, 0.10302485, 0.122541], 'close_rate': [0.104969, 0.103541, 0.123541], 'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS] }), ]) mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--datadir', str(testdatadir), '--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'), '--timeframe', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions', '--strategy-list', 'DefaultStrategy', 'TestStrategyLegacy', ] args = get_args(args) start_backtesting(args) # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--timeframe detected ... Using timeframe: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Loading data from 2017-11-14 20:57:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Parameter --enable-position-stacking detected ...', 'Running backtesting for Strategy DefaultStrategy', 'Running backtesting for Strategy TestStrategyLegacy', ] for line in exists: assert log_has(line, caplog) captured = capsys.readouterr() assert 'BACKTESTING REPORT' in captured.out assert 'SELL REASON STATS' in captured.out assert 'LEFT OPEN TRADES REPORT' in captured.out assert 'STRATEGY SUMMARY' in captured.out