from abc import ABC, abstractmethod from pathlib import Path import pandas as pd import torch from torch import nn class PyTorchTrainerInterface(ABC): @abstractmethod def fit(self, data_dictionary: dict[str, pd.DataFrame], splits: list[str]) -> None: """ :param data_dictionary: the dictionary constructed by DataHandler to hold all the training and test data/labels. :param splits: splits to use in training, splits must contain "train", optional "test" could be added by setting freqai.data_split_parameters.test_size > 0 in the config file. - Calculates the predicted output for the batch using the PyTorch model. - Calculates the loss between the predicted and actual output using a loss function. - Computes the gradients of the loss with respect to the model's parameters using backpropagation. - Updates the model's parameters using an optimizer. """ @abstractmethod def save(self, path: Path) -> None: """ - Saving any nn.Module state_dict - Saving model_meta_data, this dict should contain any additional data that the user needs to store. e.g class_names for classification models. """ def load(self, path: Path) -> nn.Module: """ :param path: path to zip file. :returns: pytorch model. """ checkpoint = torch.load(path) return self.load_from_checkpoint(checkpoint) @abstractmethod def load_from_checkpoint(self, checkpoint: dict) -> nn.Module: """ when using continual_learning, DataDrawer will load the dictionary (containing state dicts and model_meta_data) by calling torch.load(path). you can access this dict from any class that inherits IFreqaiModel by calling get_init_model method. :checkpoint checkpoint: dict containing the model & optimizer state dicts, model_meta_data, etc.. """