# pragma pylint: disable=missing-docstring,W0212 import logging from typing import Tuple, Dict import arrow from pandas import DataFrame from tabulate import tabulate from freqtrade import exchange from freqtrade.analyze import populate_buy_trend, populate_sell_trend from freqtrade.exchange import Bittrex from freqtrade.main import min_roi_reached from freqtrade.misc import load_config from freqtrade.optimize import load_data, preprocess from freqtrade.persistence import Trade logger = logging.getLogger(__name__) def get_timeframe(data: Dict[str, Dict]) -> Tuple[arrow.Arrow, arrow.Arrow]: """ Get the maximum timeframe for the given backtest data :param data: dictionary with backtesting data :return: tuple containing min_date, max_date """ min_date, max_date = None, None for values in data.values(): sorted_values = sorted(values, key=lambda d: arrow.get(d['T'])) if not min_date or sorted_values[0]['T'] < min_date: min_date = sorted_values[0]['T'] if not max_date or sorted_values[-1]['T'] > max_date: max_date = sorted_values[-1]['T'] return arrow.get(min_date), arrow.get(max_date) def generate_text_table( data: Dict[str, Dict], results: DataFrame, stake_currency, ticker_interval) -> str: """ Generates and returns a text table for the given backtest data and the results dataframe :return: pretty printed table with tabulate as str """ floatfmt = ('s', 'd', '.2f', '.8f', '.1f') tabular_data = [] headers = ['pair', 'buy count', 'avg profit %', 'total profit ' + stake_currency, 'avg duration'] for pair in data: result = results[results.currency == pair] tabular_data.append([ pair, len(result.index), result.profit_percent.mean() * 100.0, result.profit_BTC.sum(), result.duration.mean() * ticker_interval, ]) # Append Total tabular_data.append([ 'TOTAL', len(results.index), results.profit_percent.mean() * 100.0, results.profit_BTC.sum(), results.duration.mean() * ticker_interval, ]) return tabulate(tabular_data, headers=headers, floatfmt=floatfmt) def backtest(stake_amount: float, processed: Dict[str, DataFrame], max_open_trades: int = 0, realistic: bool = True) -> DataFrame: """ Implements backtesting functionality :param stake_amount: btc amount to use for each trade :param processed: a processed dictionary with format {pair, data} :param max_open_trades: maximum number of concurrent trades (default: 0, disabled) :param realistic: do we try to simulate realistic trades? (default: True) :return: DataFrame """ trades = [] trade_count_lock: dict = {} exchange._API = Bittrex({'key': '', 'secret': ''}) for pair, pair_data in processed.items(): pair_data['buy'], pair_data['sell'] = 0, 0 ticker = populate_sell_trend(populate_buy_trend(pair_data)) # for each buy point lock_pair_until = None for row in ticker[ticker.buy == 1].itertuples(index=True): if realistic: if lock_pair_until is not None and row.Index <= lock_pair_until: continue if max_open_trades > 0: # Check if max_open_trades has already been reached for the given date if not trade_count_lock.get(row.date, 0) < max_open_trades: continue if max_open_trades > 0: # Increase lock trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1 trade = Trade( open_rate=row.close, open_date=row.date, stake_amount=stake_amount, amount=stake_amount / row.open, fee=exchange.get_fee() ) # calculate win/lose forwards from buy point for row2 in ticker[row.Index + 1:].itertuples(index=True): if max_open_trades > 0: # Increase trade_count_lock for every iteration trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1 if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1: current_profit_percent = trade.calc_profit_percent(rate=row2.close) current_profit_btc = trade.calc_profit(rate=row2.close) lock_pair_until = row2.Index trades.append( ( pair, current_profit_percent, current_profit_btc, row2.Index - row.Index ) ) break labels = ['currency', 'profit_percent', 'profit_BTC', 'duration'] return DataFrame.from_records(trades, columns=labels) def start(args): # Initialize logger logging.basicConfig( level=args.loglevel, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', ) exchange._API = Bittrex({'key': '', 'secret': ''}) logger.info('Using config: %s ...', args.config) config = load_config(args.config) logger.info('Using ticker_interval: %s ...', args.ticker_interval) data = {} pairs = config['exchange']['pair_whitelist'] if args.live: logger.info('Downloading data for all pairs in whitelist ...') for pair in pairs: data[pair] = exchange.get_ticker_history(pair, args.ticker_interval) else: logger.info('Using local backtesting data (using whitelist in given config) ...') data = load_data(pairs=pairs, ticker_interval=args.ticker_interval, refresh_pairs=args.refresh_pairs) logger.info('Using stake_currency: %s ...', config['stake_currency']) logger.info('Using stake_amount: %s ...', config['stake_amount']) # Print timeframe min_date, max_date = get_timeframe(data) logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat()) max_open_trades = 0 if args.realistic_simulation: logger.info('Using max_open_trades: %s ...', config['max_open_trades']) max_open_trades = config['max_open_trades'] # Monkey patch config from freqtrade import main main._CONF = config # Execute backtest and print results results = backtest( config['stake_amount'], preprocess(data), max_open_trades, args.realistic_simulation ) logger.info( '\n====================== BACKTESTING REPORT ======================================\n%s', generate_text_table(data, results, config['stake_currency'], args.ticker_interval) )