# Advanced Orderflow This page explains some advanced tasks and configuration options that can be performed to use orderflow data by downloading public trade data. ## Quickstart enable using public trades in `config.json` ``` "exchange": { ... "use_public_trades": true, } ``` set orderflow processing configuration in `config.json`: ``` "orderflow": { "scale": 0.5, "stacked_imbalance_range": 3, # needs at least this amount of imblance next to each other "imbalance_volume": 1, # filters out below "imbalance_ratio": 300 # filters out ratio lower than }, ``` ## Downloading data for backtesting - use `--dl-trades` to fetch trades for timerange For example ``` bash freqtrade download-data -p BTC/USDT:USDT --timerange 20230101- --trading-mode futures --timeframes 5m --dl-trades ``` ## Accessing orderflow data Several new columns are available when activated. ``` python dataframe['trades'] dataframe['orderflow'] dataframe['bid'] dataframe['ask'] dataframe['delta'] dataframe['min_delta'] dataframe['max_delta'] dataframe['total_trades'] dataframe['stacked_imbalances_bid'] dataframe['stacked_imbalances_ask'] ``` These can be accessed like this: ``` python def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # calculating cumulative delta dataframe['cum_delta'] = cumulative_delta(dataframe['delta']) def cumulative_delta(delta: Series): cumdelta = delta.cumsum() return cumdelta ```