""" Functions to convert data from one format to another """ import logging from pathlib import Path from typing import Dict, List import pandas as pd from pandas import DataFrame, to_datetime from freqtrade.configuration import TimeRange from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TRADES_DTYPES, Config, TradeList) from freqtrade.enums import CandleType, TradingMode from freqtrade.exceptions import OperationalException logger = logging.getLogger(__name__) def trades_df_remove_duplicates(trades: pd.DataFrame) -> pd.DataFrame: """ Removes duplicates from the trades DataFrame. Uses pandas.DataFrame.drop_duplicates to remove duplicates based on the 'timestamp' column. :param trades: DataFrame with the columns constants.DEFAULT_TRADES_COLUMNS :return: DataFrame with duplicates removed based on the 'timestamp' column """ return trades.drop_duplicates(subset=['timestamp', 'id']) def trades_dict_to_list(trades: List[Dict]) -> TradeList: """ Convert fetch_trades result into a List (to be more memory efficient). :param trades: List of trades, as returned by ccxt.fetch_trades. :return: List of Lists, with constants.DEFAULT_TRADES_COLUMNS as columns """ return [[t[col] for col in DEFAULT_TRADES_COLUMNS] for t in trades] def trades_convert_types(trades: DataFrame) -> DataFrame: """ Convert Trades dtypes and add 'date' column """ trades = trades.astype(TRADES_DTYPES) trades['date'] = to_datetime(trades['timestamp'], unit='ms', utc=True) return trades def trades_list_to_df(trades: TradeList, convert: bool = True): """ convert trades list to dataframe :param trades: List of Lists with constants.DEFAULT_TRADES_COLUMNS as columns """ if not trades: df = DataFrame(columns=DEFAULT_TRADES_COLUMNS) else: df = DataFrame(trades, columns=DEFAULT_TRADES_COLUMNS) if convert: df = trades_convert_types(df) return df def trades_to_ohlcv(trades: DataFrame, timeframe: str) -> DataFrame: """ Converts trades list to OHLCV list :param trades: List of trades, as returned by ccxt.fetch_trades. :param timeframe: Timeframe to resample data to :return: OHLCV Dataframe. :raises: ValueError if no trades are provided """ from freqtrade.exchange import timeframe_to_resample_freq if trades.empty: raise ValueError('Trade-list empty.') df = trades.set_index('date', drop=True) resample_interval = timeframe_to_resample_freq(timeframe) df_new = df['price'].resample(resample_interval).ohlc() df_new['volume'] = df['amount'].resample(resample_interval).sum() df_new['date'] = df_new.index # Drop 0 volume rows df_new = df_new.dropna() return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS] def convert_trades_to_ohlcv( pairs: List[str], timeframes: List[str], datadir: Path, timerange: TimeRange, erase: bool, data_format_ohlcv: str, data_format_trades: str, candle_type: CandleType, ) -> None: """ Convert stored trades data to ohlcv data """ from freqtrade.data.history.idatahandler import get_datahandler data_handler_trades = get_datahandler(datadir, data_format=data_format_trades) data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv) logger.info(f"About to convert pairs: '{', '.join(pairs)}', " f"intervals: '{', '.join(timeframes)}' to {datadir}") trading_mode = TradingMode.FUTURES if candle_type != CandleType.SPOT else TradingMode.SPOT for pair in pairs: trades = data_handler_trades.trades_load(pair, trading_mode) for timeframe in timeframes: if erase: if data_handler_ohlcv.ohlcv_purge(pair, timeframe, candle_type=candle_type): logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.') try: ohlcv = trades_to_ohlcv(trades, timeframe) # Store ohlcv data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv, candle_type=candle_type) except ValueError: logger.warning(f'Could not convert {pair} to OHLCV.') def convert_trades_format(config: Config, convert_from: str, convert_to: str, erase: bool): """ Convert trades from one format to another format. :param config: Config dictionary :param convert_from: Source format :param convert_to: Target format :param erase: Erase source data (does not apply if source and target format are identical) """ if convert_from == 'kraken_csv': if config['exchange']['name'] != 'kraken': raise OperationalException( 'Converting from csv is only supported for kraken.' 'Please refer to the documentation for details about this special mode.' ) from freqtrade.data.converter.trade_converter_kraken import import_kraken_trades_from_csv import_kraken_trades_from_csv(config, convert_to) return from freqtrade.data.history.idatahandler import get_datahandler src = get_datahandler(config['datadir'], convert_from) trg = get_datahandler(config['datadir'], convert_to) if 'pairs' not in config: config['pairs'] = src.trades_get_pairs(config['datadir']) logger.info(f"Converting trades for {config['pairs']}") trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT) for pair in config['pairs']: data = src.trades_load(pair, trading_mode) logger.info(f"Converting {len(data)} trades for {pair}") trg.trades_store(pair, data, trading_mode) if erase and convert_from != convert_to: logger.info(f"Deleting source Trade data for {pair}.") src.trades_purge(pair, trading_mode)