#!/usr/bin/env python # -*- coding: utf-8 -*- # # QTPyLib: Quantitative Trading Python Library # https://github.com/ranaroussi/qtpylib # # Copyright 2016-2018 Ran Aroussi # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings import sys from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas.core.base import PandasObject # ============================================= # check min, python version if sys.version_info < (3, 4): raise SystemError("QTPyLib requires Python version >= 3.4") # ============================================= warnings.simplefilter(action="ignore", category=RuntimeWarning) # ============================================= def numpy_rolling_window(data, window): shape = data.shape[:-1] + (data.shape[-1] - window + 1, window) strides = data.strides + (data.strides[-1],) return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides) def numpy_rolling_series(func): def func_wrapper(data, window, as_source=False): series = data.values if isinstance(data, pd.Series) else data new_series = np.empty(len(series)) * np.nan calculated = func(series, window) new_series[-len(calculated):] = calculated if as_source and isinstance(data, pd.Series): return pd.Series(index=data.index, data=new_series) return new_series return func_wrapper @numpy_rolling_series def numpy_rolling_mean(data, window, as_source=False): return np.mean(numpy_rolling_window(data, window), axis=-1) @numpy_rolling_series def numpy_rolling_std(data, window, as_source=False): return np.std(numpy_rolling_window(data, window), axis=-1, ddof=1) # --------------------------------------------- def session(df, start='17:00', end='16:00'): """ remove previous globex day from df """ if df.empty: return df # get start/end/now as decimals int_start = list(map(int, start.split(':'))) int_start = (int_start[0] + int_start[1] - 1 / 100) - 0.0001 int_end = list(map(int, end.split(':'))) int_end = int_end[0] + int_end[1] / 100 int_now = (df[-1:].index.hour[0] + (df[:1].index.minute[0]) / 100) # same-dat session? is_same_day = int_end > int_start # set pointers curr = prev = df[-1:].index[0].strftime('%Y-%m-%d') # globex/forex session if not is_same_day: prev = (datetime.strptime(curr, '%Y-%m-%d') - timedelta(1)).strftime('%Y-%m-%d') # slice if int_now >= int_start: df = df[df.index >= curr + ' ' + start] else: df = df[df.index >= prev + ' ' + start] return df.copy() # --------------------------------------------- def heikinashi(bars): bars = bars.copy() bars['ha_close'] = (bars['open'] + bars['high'] + bars['low'] + bars['close']) / 4 # ha open for i in range(0, len(bars)): bars.at[i, 'ha_open'] = ( (bars.at[0, 'open'] if i == 0 else bars.at[i - 1, 'ha_open']) + (bars.at[0, 'close'] if i == 0 else bars.at[i - 1, 'ha_close']) ) / 2 bars['ha_high'] = bars.loc[:, ['high', 'ha_open', 'ha_close']].max(axis=1) bars['ha_low'] = bars.loc[:, ['low', 'ha_open', 'ha_close']].min(axis=1) return pd.DataFrame(index=bars.index, data={'open': bars['ha_open'], 'high': bars['ha_high'], 'low': bars['ha_low'], 'close': bars['ha_close']}) # --------------------------------------------- def tdi(series, rsi_lookback=13, rsi_smooth_len=2, rsi_signal_len=7, bb_lookback=34, bb_std=1.6185): rsi_data = rsi(series, rsi_lookback) rsi_smooth = sma(rsi_data, rsi_smooth_len) rsi_signal = sma(rsi_data, rsi_signal_len) bb_series = bollinger_bands(rsi_data, bb_lookback, bb_std) return pd.DataFrame(index=series.index, data={ "rsi": rsi_data, "rsi_signal": rsi_signal, "rsi_smooth": rsi_smooth, "rsi_bb_upper": bb_series['upper'], "rsi_bb_lower": bb_series['lower'], "rsi_bb_mid": bb_series['mid'] }) # --------------------------------------------- def awesome_oscillator(df, weighted=False, fast=5, slow=34): midprice = (df['high'] + df['low']) / 2 if weighted: ao = (midprice.ewm(fast).mean() - midprice.ewm(slow).mean()).values else: ao = numpy_rolling_mean(midprice, fast) - \ numpy_rolling_mean(midprice, slow) return pd.Series(index=df.index, data=ao) # --------------------------------------------- def nans(length=1): mtx = np.empty(length) mtx[:] = np.nan return mtx # --------------------------------------------- def typical_price(bars): res = (bars['high'] + bars['low'] + bars['close']) / 3. return pd.Series(index=bars.index, data=res) # --------------------------------------------- def mid_price(bars): res = (bars['high'] + bars['low']) / 2. return pd.Series(index=bars.index, data=res) # --------------------------------------------- def ibs(bars): """ Internal bar strength """ res = np.round((bars['close'] - bars['low']) / (bars['high'] - bars['low']), 2) return pd.Series(index=bars.index, data=res) # --------------------------------------------- def true_range(bars): return pd.DataFrame({ "hl": bars['high'] - bars['low'], "hc": abs(bars['high'] - bars['close'].shift(1)), "lc": abs(bars['low'] - bars['close'].shift(1)) }).max(axis=1) # --------------------------------------------- def atr(bars, window=14, exp=False): tr = true_range(bars) if exp: res = rolling_weighted_mean(tr, window) else: res = rolling_mean(tr, window) res = pd.Series(res) return (res.shift(1) * (window - 1) + res) / window # --------------------------------------------- def crossed(series1, series2, direction=None): if isinstance(series1, np.ndarray): series1 = pd.Series(series1) if isinstance(series2, (float, int, np.ndarray)): series2 = pd.Series(index=series1.index, data=series2) if direction is None or direction == "above": above = pd.Series((series1 > series2) & ( series1.shift(1) <= series2.shift(1))) if direction is None or direction == "below": below = pd.Series((series1 < series2) & ( series1.shift(1) >= series2.shift(1))) if direction is None: return above or below return above if direction == "above" else below def crossed_above(series1, series2): return crossed(series1, series2, "above") def crossed_below(series1, series2): return crossed(series1, series2, "below") # --------------------------------------------- def rolling_std(series, window=200, min_periods=None): min_periods = window if min_periods is None else min_periods if min_periods == window and len(series) > window: return numpy_rolling_std(series, window, True) else: try: return series.rolling(window=window, min_periods=min_periods).std() except Exception as e: # noqa: F841 return pd.Series(series).rolling(window=window, min_periods=min_periods).std() # --------------------------------------------- def rolling_mean(series, window=200, min_periods=None): min_periods = window if min_periods is None else min_periods if min_periods == window and len(series) > window: return numpy_rolling_mean(series, window, True) else: try: return series.rolling(window=window, min_periods=min_periods).mean() except Exception as e: # noqa: F841 return pd.Series(series).rolling(window=window, min_periods=min_periods).mean() # --------------------------------------------- def rolling_min(series, window=14, min_periods=None): min_periods = window if min_periods is None else min_periods try: return series.rolling(window=window, min_periods=min_periods).min() except Exception as e: # noqa: F841 return pd.Series(series).rolling(window=window, min_periods=min_periods).min() # --------------------------------------------- def rolling_max(series, window=14, min_periods=None): min_periods = window if min_periods is None else min_periods try: return series.rolling(window=window, min_periods=min_periods).min() except Exception as e: # noqa: F841 return pd.Series(series).rolling(window=window, min_periods=min_periods).min() # --------------------------------------------- def rolling_weighted_mean(series, window=200, min_periods=None): min_periods = window if min_periods is None else min_periods try: return series.ewm(span=window, min_periods=min_periods).mean() except Exception as e: # noqa: F841 return pd.ewma(series, span=window, min_periods=min_periods) # --------------------------------------------- def hull_moving_average(series, window=200, min_periods=None): min_periods = window if min_periods is None else min_periods ma = (2 * rolling_weighted_mean(series, window / 2, min_periods)) - \ rolling_weighted_mean(series, window, min_periods) return rolling_weighted_mean(ma, np.sqrt(window), min_periods) # --------------------------------------------- def sma(series, window=200, min_periods=None): return rolling_mean(series, window=window, min_periods=min_periods) # --------------------------------------------- def wma(series, window=200, min_periods=None): return rolling_weighted_mean(series, window=window, min_periods=min_periods) # --------------------------------------------- def hma(series, window=200, min_periods=None): return hull_moving_average(series, window=window, min_periods=min_periods) # --------------------------------------------- def vwap(bars): """ calculate vwap of entire time series (input can be pandas series or numpy array) bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ] """ typical = ((bars['high'] + bars['low'] + bars['close']) / 3).values volume = bars['volume'].values return pd.Series(index=bars.index, data=np.cumsum(volume * typical) / np.cumsum(volume)) # --------------------------------------------- def rolling_vwap(bars, window=200, min_periods=None): """ calculate vwap using moving window (input can be pandas series or numpy array) bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ] """ min_periods = window if min_periods is None else min_periods typical = ((bars['high'] + bars['low'] + bars['close']) / 3) volume = bars['volume'] left = (volume * typical).rolling(window=window, min_periods=min_periods).sum() right = volume.rolling(window=window, min_periods=min_periods).sum() return pd.Series(index=bars.index, data=(left / right) ).replace([np.inf, -np.inf], float('NaN')).ffill() # --------------------------------------------- def rsi(series, window=14): """ compute the n period relative strength indicator """ # 100-(100/relative_strength) deltas = np.diff(series) seed = deltas[:window + 1] # default values ups = seed[seed > 0].sum() / window downs = -seed[seed < 0].sum() / window rsival = np.zeros_like(series) rsival[:window] = 100. - 100. / (1. + ups / downs) # period values for i in range(window, len(series)): delta = deltas[i - 1] if delta > 0: upval = delta downval = 0 else: upval = 0 downval = -delta ups = (ups * (window - 1) + upval) / window downs = (downs * (window - 1.) + downval) / window rsival[i] = 100. - 100. / (1. + ups / downs) # return rsival return pd.Series(index=series.index, data=rsival) # --------------------------------------------- def macd(series, fast=3, slow=10, smooth=16): """ compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg' return value is emaslow, emafast, macd which are len(x) arrays """ macd_line = rolling_weighted_mean(series, window=fast) - \ rolling_weighted_mean(series, window=slow) signal = rolling_weighted_mean(macd_line, window=smooth) histogram = macd_line - signal # return macd_line, signal, histogram return pd.DataFrame(index=series.index, data={ 'macd': macd_line.values, 'signal': signal.values, 'histogram': histogram.values }) # --------------------------------------------- def bollinger_bands(series, window=20, stds=2): ma = rolling_mean(series, window=window, min_periods=1) std = rolling_std(series, window=window, min_periods=1) upper = ma + std * stds lower = ma - std * stds return pd.DataFrame(index=series.index, data={ 'upper': upper, 'mid': ma, 'lower': lower }) # --------------------------------------------- def weighted_bollinger_bands(series, window=20, stds=2): ema = rolling_weighted_mean(series, window=window) std = rolling_std(series, window=window) upper = ema + std * stds lower = ema - std * stds return pd.DataFrame(index=series.index, data={ 'upper': upper.values, 'mid': ema.values, 'lower': lower.values }) # --------------------------------------------- def returns(series): try: res = (series / series.shift(1) - 1).replace([np.inf, -np.inf], float('NaN')) except Exception as e: # noqa: F841 res = nans(len(series)) return pd.Series(index=series.index, data=res) # --------------------------------------------- def log_returns(series): try: res = np.log(series / series.shift(1) ).replace([np.inf, -np.inf], float('NaN')) except Exception as e: # noqa: F841 res = nans(len(series)) return pd.Series(index=series.index, data=res) # --------------------------------------------- def implied_volatility(series, window=252): try: logret = np.log(series / series.shift(1) ).replace([np.inf, -np.inf], float('NaN')) res = numpy_rolling_std(logret, window) * np.sqrt(window) except Exception as e: # noqa: F841 res = nans(len(series)) return pd.Series(index=series.index, data=res) # --------------------------------------------- def keltner_channel(bars, window=14, atrs=2): typical_mean = rolling_mean(typical_price(bars), window) atrval = atr(bars, window) * atrs upper = typical_mean + atrval lower = typical_mean - atrval return pd.DataFrame(index=bars.index, data={ 'upper': upper.values, 'mid': typical_mean.values, 'lower': lower.values }) # --------------------------------------------- def roc(series, window=14): """ compute rate of change """ res = (series - series.shift(window)) / series.shift(window) return pd.Series(index=series.index, data=res) # --------------------------------------------- def cci(series, window=14): """ compute commodity channel index """ price = typical_price(series) typical_mean = rolling_mean(price, window) res = (price - typical_mean) / (.015 * np.std(typical_mean)) return pd.Series(index=series.index, data=res) # --------------------------------------------- def stoch(df, window=14, d=3, k=3, fast=False): """ compute the n period relative strength indicator http://excelta.blogspot.co.il/2013/09/stochastic-oscillator-technical.html """ my_df = pd.DataFrame(index=df.index) my_df['rolling_max'] = df['high'].rolling(window).max() my_df['rolling_min'] = df['low'].rolling(window).min() my_df['fast_k'] = ( 100 * (df['close'] - my_df['rolling_min']) / (my_df['rolling_max'] - my_df['rolling_min']) ) my_df['fast_d'] = my_df['fast_k'].rolling(d).mean() if fast: return my_df.loc[:, ['fast_k', 'fast_d']] my_df['slow_k'] = my_df['fast_k'].rolling(k).mean() my_df['slow_d'] = my_df['slow_k'].rolling(d).mean() return my_df.loc[:, ['slow_k', 'slow_d']] # --------------------------------------------- def zlma(series, window=20, min_periods=None, kind="ema"): """ John Ehlers' Zero lag (exponential) moving average https://en.wikipedia.org/wiki/Zero_lag_exponential_moving_average """ min_periods = window if min_periods is None else min_periods lag = (window - 1) // 2 series = 2 * series - series.shift(lag) if kind in ['ewm', 'ema']: return wma(series, lag, min_periods) elif kind == "hma": return hma(series, lag, min_periods) return sma(series, lag, min_periods) def zlema(series, window, min_periods=None): return zlma(series, window, min_periods, kind="ema") def zlsma(series, window, min_periods=None): return zlma(series, window, min_periods, kind="sma") def zlhma(series, window, min_periods=None): return zlma(series, window, min_periods, kind="hma") # --------------------------------------------- def zscore(bars, window=20, stds=1, col='close'): """ get zscore of price """ std = numpy_rolling_std(bars[col], window) mean = numpy_rolling_mean(bars[col], window) return (bars[col] - mean) / (std * stds) # --------------------------------------------- def pvt(bars): """ Price Volume Trend """ trend = ((bars['close'] - bars['close'].shift(1)) / bars['close'].shift(1)) * bars['volume'] return trend.cumsum() # ============================================= PandasObject.session = session PandasObject.atr = atr PandasObject.bollinger_bands = bollinger_bands PandasObject.cci = cci PandasObject.crossed = crossed PandasObject.crossed_above = crossed_above PandasObject.crossed_below = crossed_below PandasObject.heikinashi = heikinashi PandasObject.hull_moving_average = hull_moving_average PandasObject.ibs = ibs PandasObject.implied_volatility = implied_volatility PandasObject.keltner_channel = keltner_channel PandasObject.log_returns = log_returns PandasObject.macd = macd PandasObject.returns = returns PandasObject.roc = roc PandasObject.rolling_max = rolling_max PandasObject.rolling_min = rolling_min PandasObject.rolling_mean = rolling_mean PandasObject.rolling_std = rolling_std PandasObject.rsi = rsi PandasObject.stoch = stoch PandasObject.zscore = zscore PandasObject.pvt = pvt PandasObject.tdi = tdi PandasObject.true_range = true_range PandasObject.mid_price = mid_price PandasObject.typical_price = typical_price PandasObject.vwap = vwap PandasObject.rolling_vwap = rolling_vwap PandasObject.weighted_bollinger_bands = weighted_bollinger_bands PandasObject.rolling_weighted_mean = rolling_weighted_mean PandasObject.sma = sma PandasObject.wma = wma PandasObject.ema = wma PandasObject.hma = hma PandasObject.zlsma = zlsma PandasObject.zlwma = zlema PandasObject.zlema = zlema PandasObject.zlhma = zlhma PandasObject.zlma = zlma