# pragma pylint: disable=missing-docstring from operator import itemgetter import logging import os from functools import reduce from math import exp import pytest from pandas import DataFrame from qtpylib.indicators import crossed_above from hyperopt import fmin, tpe, hp, Trials, STATUS_OK from freqtrade.tests.test_backtesting import backtest, format_results logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot # set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data TARGET_TRADES = 1200 @pytest.fixture def pairs(): return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay', 'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc'] @pytest.fixture def conf(): return { "minimal_roi": { "40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04 }, "stoploss": -0.05 } def buy_strategy_generator(params): print(params) def populate_buy_trend(dataframe: DataFrame) -> DataFrame: conditions = [] # GUARDS AND TRENDS if params['below_sma']['enabled']: conditions.append(dataframe['close'] < dataframe['sma']) if params['over_sma']['enabled']: conditions.append(dataframe['close'] > dataframe['sma']) if params['mfi']['enabled']: conditions.append(dataframe['mfi'] < params['mfi']['value']) if params['fastd']['enabled']: conditions.append(dataframe['fastd'] < params['fastd']['value']) if params['adx']['enabled']: conditions.append(dataframe['adx'] > params['adx']['value']) if params['cci']['enabled']: conditions.append(dataframe['cci'] < params['cci']['value']) if params['rsi']['enabled']: conditions.append(dataframe['rsi'] < params['rsi']['value']) if params['over_sar']['enabled']: conditions.append(dataframe['close'] > dataframe['sar']) if params['uptrend_sma']['enabled']: prevsma = dataframe['sma'].shift(1) conditions.append(dataframe['sma'] > prevsma) prev_fastd = dataframe['fastd'].shift(1) # TRIGGERS triggers = { 'lower_bb': dataframe['tema'] <= dataframe['blower'], 'faststoch10': (dataframe['fastd'] >= 10) & (prev_fastd < 10), 'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)), } conditions.append(triggers.get(params['trigger']['type'])) dataframe.loc[ reduce(lambda x, y: x & y, conditions), 'buy'] = 1 dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close'] return dataframe return populate_buy_trend @pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set") def test_hyperopt(conf, pairs, mocker): def optimizer(params): buy_strategy = buy_strategy_generator(params) mocker.patch('freqtrade.analyze.populate_buy_trend', side_effect=buy_strategy) results = backtest(conf, pairs, mocker) result = format_results(results) print(result) total_profit = results.profit.sum() * 1000 trade_count = len(results.index) trade_loss = 1 - 0.8 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5) profit_loss = exp(-total_profit**3 / 10**11) return { 'loss': trade_loss + profit_loss, 'status': STATUS_OK, 'result': result } space = { 'mfi': hp.choice('mfi', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('mfi-value', 5, 15)} ]), 'fastd': hp.choice('fastd', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('fastd-value', 5, 40)} ]), 'adx': hp.choice('adx', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('adx-value', 10, 30)} ]), 'cci': hp.choice('cci', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('cci-value', -150, -100)} ]), 'rsi': hp.choice('rsi', [ {'enabled': False}, {'enabled': True, 'value': hp.uniform('rsi-value', 20, 30)} ]), 'below_sma': hp.choice('below_sma', [ {'enabled': False}, {'enabled': True} ]), 'over_sma': hp.choice('over_sma', [ {'enabled': False}, {'enabled': True} ]), 'over_sar': hp.choice('over_sar', [ {'enabled': False}, {'enabled': True} ]), 'uptrend_sma': hp.choice('uptrend_sma', [ {'enabled': False}, {'enabled': True} ]), 'trigger': hp.choice('trigger', [ {'type': 'lower_bb'}, {'type': 'faststoch10'}, {'type': 'ao_cross_zero'} ]), } trials = Trials() best = fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=40, trials=trials) print('\n\n\n\n====================== HYPEROPT BACKTESTING REPORT ================================') print('Best parameters {}'.format(best)) newlist = sorted(trials.results, key=itemgetter('loss')) print('Result: {}'.format(newlist[0]['result']))