#!/usr/bin/env python3 """ Script to display profits Mandatory Cli parameters: -p / --pair: pair to examine Optional Cli parameters -c / --config: specify configuration file -s / --strategy: strategy to use -d / --datadir: path to pair backtest data --timerange: specify what timerange of data to use --export-filename: Specify where the backtest export is located. """ import json import logging import sys from argparse import Namespace from pathlib import Path from typing import List, Optional import numpy as np import plotly.graph_objs as go from plotly import tools from plotly.offline import plot from freqtrade.arguments import Arguments, ARGS_PLOT_DATAFRAME from freqtrade.configuration import Configuration from freqtrade.data import history from freqtrade.exchange import timeframe_to_seconds from freqtrade.misc import common_datearray from freqtrade.resolvers import StrategyResolver from freqtrade.state import RunMode logger = logging.getLogger(__name__) # data:: [ pair, profit-%, enter, exit, time, duration] # data:: ["ETH/BTC", 0.0023975, "1515598200", "1515602100", "2018-01-10 07:30:00+00:00", 65] def make_profit_array(data: List, px: int, min_date: int, interval: str, filter_pairs: Optional[List] = None) -> np.ndarray: pg = np.zeros(px) filter_pairs = filter_pairs or [] # Go through the trades # and make an total profit # array for trade in data: pair = trade[0] if filter_pairs and pair not in filter_pairs: continue profit = trade[1] trade_sell_time = int(trade[3]) ix = define_index(min_date, trade_sell_time, interval) if ix < px: logger.debug('[%s]: Add profit %s on %s', pair, profit, trade[4]) pg[ix] += profit # rewrite the pg array to go from # total profits at each timeframe # to accumulated profits pa = 0 for x in range(0, len(pg)): p = pg[x] # Get current total percent pa += p # Add to the accumulated percent pg[x] = pa # write back to save memory return pg def plot_profit(args: Namespace) -> None: """ Plots the total profit for all pairs. Note, the profit calculation isn't realistic. But should be somewhat proportional, and therefor useful in helping out to find a good algorithm. """ # We need to use the same pairs, same ticker_interval # and same timeperiod as used in backtesting # to match the tickerdata against the profits-results timerange = Arguments.parse_timerange(args.timerange) config = Configuration(args, RunMode.OTHER).get_config() # Init strategy try: strategy = StrategyResolver({'strategy': config.get('strategy')}).strategy except AttributeError: logger.critical( 'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"', config.get('strategy') ) exit(1) # Load the profits results try: filename = args.exportfilename with open(filename) as file: data = json.load(file) except FileNotFoundError: logger.critical( 'File "backtest-result.json" not found. This script require backtesting ' 'results to run.\nPlease run a backtesting with the parameter --export.') exit(1) # Take pairs from the cli otherwise switch to the pair in the config file if args.pairs: filter_pairs = args.pairs filter_pairs = filter_pairs.split(',') else: filter_pairs = config['exchange']['pair_whitelist'] ticker_interval = strategy.ticker_interval pairs = config['exchange']['pair_whitelist'] if filter_pairs: pairs = list(set(pairs) & set(filter_pairs)) logger.info('Filter, keep pairs %s' % pairs) tickers = history.load_data( datadir=Path(str(config.get('datadir'))), pairs=pairs, ticker_interval=ticker_interval, refresh_pairs=False, timerange=timerange ) dataframes = strategy.tickerdata_to_dataframe(tickers) # NOTE: the dataframes are of unequal length, # 'dates' is an merged date array of them all. dates = common_datearray(dataframes) min_date = int(min(dates).timestamp()) max_date = int(max(dates).timestamp()) num_iterations = define_index(min_date, max_date, ticker_interval) + 1 # Make an average close price of all the pairs that was involved. # this could be useful to gauge the overall market trend # We are essentially saying: # array <- sum dataframes[*]['close'] / num_items dataframes # FIX: there should be some onliner numpy/panda for this avgclose = np.zeros(num_iterations) num = 0 for pair, pair_data in dataframes.items(): close = pair_data['close'] maxprice = max(close) # Normalize price to [0,1] logger.info('Pair %s has length %s' % (pair, len(close))) for x in range(0, len(close)): avgclose[x] += close[x] / maxprice # avgclose += close num += 1 avgclose /= num # make an profits-growth array pg = make_profit_array(data, num_iterations, min_date, ticker_interval, filter_pairs) # # Plot the pairs average close prices, and total profit growth # avgclose = go.Scattergl( x=dates, y=avgclose, name='Avg close price', ) profit = go.Scattergl( x=dates, y=pg, name='Profit', ) fig = tools.make_subplots(rows=3, cols=1, shared_xaxes=True, row_width=[1, 1, 1]) fig.append_trace(avgclose, 1, 1) fig.append_trace(profit, 2, 1) for pair in pairs: pg = make_profit_array(data, num_iterations, min_date, ticker_interval, [pair]) pair_profit = go.Scattergl( x=dates, y=pg, name=pair, ) fig.append_trace(pair_profit, 3, 1) plot(fig, filename=str(Path('user_data').joinpath('freqtrade-profit-plot.html'))) def define_index(min_date: int, max_date: int, ticker_interval: str) -> int: """ Return the index of a specific date """ interval_seconds = timeframe_to_seconds(ticker_interval) return int((max_date - min_date) / interval_seconds) def plot_parse_args(args: List[str]) -> Namespace: """ Parse args passed to the script :param args: Cli arguments :return: args: Array with all arguments """ arguments = Arguments(args, 'Graph profits') arguments.build_args(optionlist=ARGS_PLOT_DATAFRAME) arguments.common_optimize_options() arguments.backtesting_options() arguments.common_scripts_options() return arguments.parse_args() def main(sysargv: List[str]) -> None: """ This function will initiate the bot and start the trading loop. :return: None """ logger.info('Starting Plot Dataframe') plot_profit( plot_parse_args(sysargv) ) if __name__ == '__main__': main(sys.argv[1:])