freqtrade_origin/tests/optimize/test_backtesting.py
2024-09-29 09:44:07 +02:00

2562 lines
93 KiB
Python

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import random
from collections import defaultdict
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
import numpy as np
import pandas as pd
import pytest
from freqtrade import constants
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_fill_up_missing_data
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange
from freqtrade.enums import CandleType, ExitType, RunMode
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import timeframe_to_next_date, timeframe_to_prev_date
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename, get_strategy_run_id
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.persistence import LocalTrade, Trade
from freqtrade.resolvers import StrategyResolver
from freqtrade.util.datetime_helpers import dt_utc
from tests.conftest import (
CURRENT_TEST_STRATEGY,
EXMS,
generate_test_data,
get_args,
log_has,
log_has_re,
patch_exchange,
patched_configuration_load_config_file,
)
ORDER_TYPES = [
{"entry": "limit", "exit": "limit", "stoploss": "limit", "stoploss_on_exchange": False},
{"entry": "limit", "exit": "limit", "stoploss": "limit", "stoploss_on_exchange": True},
]
def trim_dictlist(dict_list, num):
new = {}
for pair, pair_data in dict_list.items():
new[pair] = pair_data[num:].reset_index()
return new
def load_data_test(what, testdatadir):
timerange = TimeRange.parse_timerange("1510694220-1510700340")
data = history.load_pair_history(
pair="UNITTEST/BTC",
datadir=testdatadir,
timeframe="1m",
timerange=timerange,
drop_incomplete=False,
fill_up_missing=False,
)
base = 0.001
if what == "raise":
data.loc[:, "open"] = data.index * base
data.loc[:, "high"] = data.index * base + 0.0001
data.loc[:, "low"] = data.index * base - 0.0001
data.loc[:, "close"] = data.index * base
if what == "lower":
data.loc[:, "open"] = 1 - data.index * base
data.loc[:, "high"] = 1 - data.index * base + 0.0001
data.loc[:, "low"] = 1 - data.index * base - 0.0001
data.loc[:, "close"] = 1 - data.index * base
if what == "sine":
hz = 0.1 # frequency
data.loc[:, "open"] = np.sin(data.index * hz) / 1000 + base
data.loc[:, "high"] = np.sin(data.index * hz) / 1000 + base + 0.0001
data.loc[:, "low"] = np.sin(data.index * hz) / 1000 + base - 0.0001
data.loc[:, "close"] = np.sin(data.index * hz) / 1000 + base
return {
"UNITTEST/BTC": clean_ohlcv_dataframe(
data, timeframe="1m", pair="UNITTEST/BTC", fill_missing=True, drop_incomplete=True
)
}
# FIX: fixturize this?
def _make_backtest_conf(mocker, datadir, conf=None, pair="UNITTEST/BTC"):
data = history.load_data(datadir=datadir, timeframe="1m", pairs=[pair])
data = trim_dictlist(data, -201)
patch_exchange(mocker)
backtesting = Backtesting(conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
return {
"processed": processed,
"start_date": min_date,
"end_date": max_date,
}
def _trend(signals, buy_value, sell_value):
n = len(signals["low"])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals["date"])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals["enter_long"] = buy
signals["exit_long"] = sell
signals["enter_short"] = 0
signals["exit_short"] = 0
return signals
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
low = signals["low"]
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals["enter_long"] = buy
signals["exit_long"] = sell
signals["enter_short"] = 0
signals["exit_short"] = 0
return dataframe
# Unit tests
def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--export",
"none",
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert "max_open_trades" in config
assert "stake_currency" in config
assert "stake_amount" in config
assert "exchange" in config
assert "pair_whitelist" in config["exchange"]
assert "datadir" in config
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
assert "timeframe" in config
assert not log_has_re("Parameter -i/--ticker-interval detected .*", caplog)
assert "position_stacking" not in config
assert not log_has("Parameter --enable-position-stacking detected ...", caplog)
assert "timerange" not in config
assert "export" in config
assert config["export"] == "none"
assert "runmode" in config
assert config["runmode"] == RunMode.BACKTEST
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch("freqtrade.configuration.configuration.create_datadir", lambda c, x: x)
args = [
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--datadir",
"/foo/bar",
"--timeframe",
"1m",
"--enable-position-stacking",
"--disable-max-market-positions",
"--timerange",
":100",
"--export-filename",
"foo_bar.json",
"--fee",
"0",
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert "max_open_trades" in config
assert "stake_currency" in config
assert "stake_amount" in config
assert "exchange" in config
assert "pair_whitelist" in config["exchange"]
assert "datadir" in config
assert config["runmode"] == RunMode.BACKTEST
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
assert "timeframe" in config
assert log_has("Parameter -i/--timeframe detected ... Using timeframe: 1m ...", caplog)
assert "position_stacking" in config
assert log_has("Parameter --enable-position-stacking detected ...", caplog)
assert "use_max_market_positions" in config
assert log_has("Parameter --disable-max-market-positions detected ...", caplog)
assert log_has("max_open_trades set to unlimited ...", caplog)
assert "timerange" in config
assert log_has("Parameter --timerange detected: {} ...".format(config["timerange"]), caplog)
assert "export" in config
assert "exportfilename" in config
assert isinstance(config["exportfilename"], Path)
assert log_has("Storing backtest results to {} ...".format(config["exportfilename"]), caplog)
assert "fee" in config
assert log_has("Parameter --fee detected, setting fee to: {} ...".format(config["fee"]), caplog)
def test_setup_optimize_configuration_stake_amount(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--stake-amount",
"1",
"--starting-balance",
"2",
]
conf = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert isinstance(conf, dict)
args = [
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--stake-amount",
"1",
"--starting-balance",
"0.5",
]
with pytest.raises(OperationalException, match=r"Starting balance .* smaller .*"):
setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
mocker.patch(f"{EXMS}.get_fee", fee)
patch_exchange(mocker)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.start", start_mock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
]
pargs = get_args(args)
start_backtesting(pargs)
assert log_has("Starting freqtrade in Backtesting mode", caplog)
assert start_mock.call_count == 1
@pytest.mark.parametrize("order_types", ORDER_TYPES)
def test_backtesting_init(mocker, default_conf, order_types) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
default_conf["order_types"] = order_types
patch_exchange(mocker)
get_fee = mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.config == default_conf
assert backtesting.timeframe == "5m"
assert callable(backtesting.strategy.advise_all_indicators)
assert callable(backtesting.strategy.advise_entry)
assert callable(backtesting.strategy.advise_exit)
assert isinstance(backtesting.strategy.dp, DataProvider)
get_fee.assert_called()
assert backtesting.fee == 0.5
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
assert backtesting.strategy.bot_started is True
def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
del default_conf["timeframe"]
default_conf["strategy_list"] = [CURRENT_TEST_STRATEGY, "HyperoptableStrategy"]
mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
with pytest.raises(
OperationalException, match=r"Timeframe needs to be set in either configuration"
):
Backtesting(default_conf)
def test_data_with_fee(default_conf, mocker) -> None:
patch_exchange(mocker)
default_conf["fee"] = 0.01234
fee_mock = mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.fee == 0.01234
assert fee_mock.call_count == 0
default_conf["fee"] = 0.0
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.fee == 0.0
assert fee_mock.call_count == 0
def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
timerange = TimeRange.parse_timerange("1510694220-1510700340")
data = history.load_data(
testdatadir, "1m", ["UNITTEST/BTC"], timerange=timerange, fill_up_missing=True
)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.advise_all_indicators(data)
assert len(processed["UNITTEST/BTC"]) == 103
# Load strategy to compare the result between Backtesting function and strategy are the same
strategy = StrategyResolver.load_strategy(default_conf)
processed2 = strategy.advise_all_indicators(data)
assert processed["UNITTEST/BTC"].equals(processed2["UNITTEST/BTC"])
def test_backtest_abort(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting.check_abort()
backtesting.abort = True
with pytest.raises(DependencyException, match="Stop requested"):
backtesting.check_abort()
# abort flag resets
assert backtesting.abort is False
assert backtesting.progress.progress == 0
def test_backtesting_start(default_conf, mocker, caplog) -> None:
def get_timerange(input1):
return dt_utc(2017, 11, 14, 21, 17), dt_utc(2017, 11, 14, 22, 59)
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
patch_exchange(mocker)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch("freqtrade.optimize.backtesting.generate_backtest_stats")
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results")
sbs = mocker.patch("freqtrade.optimize.backtesting.store_backtest_stats")
sbc = mocker.patch("freqtrade.optimize.backtesting.store_backtest_analysis_results")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
default_conf["timeframe"] = "1m"
default_conf["export"] = "signals"
default_conf["exportfilename"] = "export.txt"
default_conf["timerange"] = "-1510694220"
default_conf["runmode"] = RunMode.BACKTEST
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.bot_loop_start = MagicMock()
backtesting.strategy.bot_start = MagicMock()
backtesting.start()
# check the logs, that will contain the backtest result
exists = ["Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days)."]
for line in exists:
assert log_has(line, caplog)
assert backtesting.strategy.dp._pairlists is not None
assert backtesting.strategy.bot_start.call_count == 1
assert backtesting.strategy.bot_loop_start.call_count == 0
assert sbs.call_count == 1
assert sbc.call_count == 1
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
def get_timerange(input1):
return dt_utc(2017, 11, 14, 21, 17), dt_utc(2017, 11, 14, 22, 59)
mocker.patch(
"freqtrade.data.history.history_utils.load_pair_history",
MagicMock(return_value=pd.DataFrame()),
)
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
patch_exchange(mocker)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
default_conf["timeframe"] = "1m"
default_conf["export"] = "none"
default_conf["timerange"] = "20180101-20180102"
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
with pytest.raises(OperationalException, match="No data found. Terminating."):
backtesting.start()
def test_backtesting_no_pair_left(default_conf, mocker) -> None:
mocker.patch(f"{EXMS}.exchange_has", MagicMock(return_value=True))
mocker.patch(
"freqtrade.data.history.history_utils.load_pair_history",
MagicMock(return_value=pd.DataFrame()),
)
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
patch_exchange(mocker)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist", PropertyMock(return_value=[])
)
default_conf["timeframe"] = "1m"
default_conf["export"] = "none"
default_conf["timerange"] = "20180101-20180102"
with pytest.raises(OperationalException, match="No pair in whitelist."):
Backtesting(default_conf)
default_conf.update(
{
"pairlists": [{"method": "StaticPairList"}],
"timeframe_detail": "1d",
}
)
with pytest.raises(
OperationalException, match="Detail timeframe must be smaller than strategy timeframe."
):
Backtesting(default_conf)
def test_backtesting_pairlist_list(default_conf, mocker, tickers) -> None:
mocker.patch(f"{EXMS}.exchange_has", MagicMock(return_value=True))
mocker.patch(f"{EXMS}.get_tickers", tickers)
mocker.patch(f"{EXMS}.price_to_precision", lambda s, x, y: y)
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
patch_exchange(mocker)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/BTC"]),
)
mocker.patch("freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist")
default_conf["ticker_interval"] = "1m"
default_conf["export"] = "none"
# Use stoploss from strategy
del default_conf["stoploss"]
default_conf["timerange"] = "20180101-20180102"
default_conf["pairlists"] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(
OperationalException,
match=r"VolumePairList not allowed for backtesting\..*StaticPairList.*",
):
Backtesting(default_conf)
default_conf["pairlists"] = [
{"method": "StaticPairList"},
{"method": "PrecisionFilter"},
]
Backtesting(default_conf)
# Multiple strategies
default_conf["strategy_list"] = [CURRENT_TEST_STRATEGY, "StrategyTestV2"]
with pytest.raises(
OperationalException,
match="PrecisionFilter not allowed for backtesting multiple strategies.",
):
Backtesting(default_conf)
def test_backtest__enter_trade(default_conf, fee, mocker) -> None:
default_conf["use_exit_signal"] = False
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
patch_exchange(mocker)
default_conf["stake_amount"] = "unlimited"
default_conf["max_open_trades"] = 2
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
pair = "UNITTEST/BTC"
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
1, # Buy
0.001, # Open
0.0011, # Close
0, # Sell
0.00099, # Low
0.0012, # High
"", # Buy Signal Name
]
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert isinstance(trade, LocalTrade)
assert trade.stake_amount == 495
# Fake 2 trades, so there's not enough amount for the next trade left.
LocalTrade.bt_trades_open.append(trade)
backtesting.wallets.update()
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert trade is None
LocalTrade.bt_trades_open.pop()
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert trade is not None
LocalTrade.bt_trades_open.pop()
backtesting.strategy.custom_stake_amount = lambda **kwargs: 123.5
backtesting.wallets.update()
trade = backtesting._enter_trade(pair, row=row, direction="long")
LocalTrade.bt_trades_open.pop()
assert trade
assert trade.stake_amount == 123.5
# In case of error - use proposed stake
backtesting.strategy.custom_stake_amount = lambda **kwargs: 20 / 0
trade = backtesting._enter_trade(pair, row=row, direction="long")
LocalTrade.bt_trades_open.pop()
assert trade
assert trade.stake_amount == 495
assert trade.is_short is False
trade = backtesting._enter_trade(pair, row=row, direction="short")
LocalTrade.bt_trades_open.pop()
assert trade
assert trade.stake_amount == 495
assert trade.is_short is True
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=300.0)
trade = backtesting._enter_trade(pair, row=row, direction="long")
LocalTrade.bt_trades_open.pop()
assert trade
assert trade.stake_amount == 300.0
def test_backtest__enter_trade_futures(default_conf_usdt, fee, mocker) -> None:
default_conf_usdt["use_exit_signal"] = False
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_max_leverage", return_value=100)
mocker.patch("freqtrade.optimize.backtesting.price_to_precision", lambda p, *args: p)
patch_exchange(mocker)
default_conf_usdt["stake_amount"] = 300
default_conf_usdt["max_open_trades"] = 2
default_conf_usdt["trading_mode"] = "futures"
default_conf_usdt["margin_mode"] = "isolated"
default_conf_usdt["stake_currency"] = "USDT"
default_conf_usdt["exchange"]["pair_whitelist"] = [".*"]
backtesting = Backtesting(default_conf_usdt)
backtesting._set_strategy(backtesting.strategylist[0])
mocker.patch("freqtrade.optimize.backtesting.Backtesting._run_funding_fees")
pair = "ETH/USDT:USDT"
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
0.1, # Open
0.12, # High
0.099, # Low
0.11, # Close
1, # enter_long
0, # exit_long
1, # enter_short
0, # exit_hsort
"", # Long Signal Name
"", # Short Signal Name
"", # Exit Signal Name
]
backtesting.strategy.leverage = MagicMock(return_value=5.0)
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
# leverage = 5
# ep1(trade.open_rate) = 0.1
# position(trade.amount) = 15000
# stake_amount = 300 -> wb = 300 / 5 = 60
# mmr = 0.01
# cum_b = 0.01
# side_1: -1 if is_short else 1
# liq_buffer = 0.05
#
# Binance, Long
# liquidation_price
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
# = ((300 + 0.01) - (1 * 15000 * 0.1)) / ((15000 * 0.01) - (1 * 15000))
# = 0.0008080740740740741
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
# = 0.08080740740740741 + ((0.1 - 0.08080740740740741) * 0.05 * 1)
# = 0.08176703703703704
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert pytest.approx(trade.liquidation_price) == 0.081767037
# Binance, Short
# liquidation_price
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
# = ((300 + 0.01) - ((-1) * 15000 * 0.1)) / ((15000 * 0.01) - ((-1) * 15000))
# = 0.0011881254125412541
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
# = 0.11881254125412541 + (abs(0.1 - 0.11881254125412541) * 0.05 * -1)
# = 0.11787191419141915
trade = backtesting._enter_trade(pair, row=row, direction="short")
assert pytest.approx(trade.liquidation_price) == 0.11787191
assert pytest.approx(trade.orders[0].cost) == (
trade.stake_amount * trade.leverage + trade.fee_open
)
assert pytest.approx(trade.orders[-1].stake_amount) == trade.stake_amount
# Stake-amount too high!
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=600.0)
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert trade is None
# Stake-amount throwing error
mocker.patch(
"freqtrade.wallets.Wallets.get_trade_stake_amount", side_effect=DependencyException
)
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert trade is None
def test_backtest__check_trade_exit(default_conf, mocker) -> None:
default_conf["use_exit_signal"] = False
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
default_conf["timeframe_detail"] = "1m"
default_conf["max_open_trades"] = 2
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
pair = "UNITTEST/BTC"
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=4, minute=55, tzinfo=timezone.utc),
200, # Open
201.5, # High
195, # Low
201, # Close
1, # enter_long
0, # exit_long
0, # enter_short
0, # exit_hsort
"", # Long Signal Name
"", # Short Signal Name
"", # Exit Signal Name
]
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert isinstance(trade, LocalTrade)
row_sell = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
200, # Open
210.5, # High
195, # Low
201, # Close
0, # enter_long
0, # exit_long
0, # enter_short
0, # exit_short
"", # long Signal Name
"", # Short Signal Name
"", # Exit Signal Name
]
# No data available.
res = backtesting._check_trade_exit(trade, row_sell, row_sell[0].to_pydatetime())
assert res is not None
assert res.exit_reason == ExitType.ROI.value
assert res.close_date_utc == datetime(2020, 1, 1, 5, 0, tzinfo=timezone.utc)
# Enter new trade
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert isinstance(trade, LocalTrade)
# Assign empty ... no result.
backtesting.detail_data[pair] = pd.DataFrame(
[],
columns=[
"date",
"open",
"high",
"low",
"close",
"enter_long",
"exit_long",
"enter_short",
"exit_short",
"long_tag",
"short_tag",
"exit_tag",
],
)
res = backtesting._check_trade_exit(trade, row, row[0].to_pydatetime())
assert res is None
def test_backtest_one(default_conf, mocker, testdatadir) -> None:
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 10
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
pair = "UNITTEST/BTC"
timerange = TimeRange("date", None, 1517227800, 0)
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
processed = backtesting.strategy.advise_all_indicators(data)
backtesting.strategy.order_filled = MagicMock()
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
results = result["results"]
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{
"pair": [pair, pair],
"stake_amount": [0.001, 0.001],
"max_stake_amount": [0.001, 0.001],
"amount": [0.00957442, 0.0097064],
"open_date": pd.to_datetime(
[dt_utc(2018, 1, 29, 18, 40, 0), dt_utc(2018, 1, 30, 3, 30, 0)], utc=True
),
"close_date": pd.to_datetime(
[dt_utc(2018, 1, 29, 22, 35, 0), dt_utc(2018, 1, 30, 4, 10, 0)], utc=True
),
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"fee_open": [0.0025, 0.0025],
"fee_close": [0.0025, 0.0025],
"trade_duration": [235, 40],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value],
"initial_stop_loss_abs": [0.0940005, 0.09272236],
"initial_stop_loss_ratio": [-0.1, -0.1],
"stop_loss_abs": [0.0940005, 0.09272236],
"stop_loss_ratio": [-0.1, -0.1],
"min_rate": [0.10370188, 0.10300000000000001],
"max_rate": [0.10501, 0.1038888],
"is_open": [False, False],
"enter_tag": ["", ""],
"leverage": [1.0, 1.0],
"is_short": [False, False],
"open_timestamp": [1517251200000, 1517283000000],
"close_timestamp": [1517265300000, 1517285400000],
"orders": [
[
{
"amount": 0.00957442,
"safe_price": 0.104445,
"ft_order_side": "buy",
"order_filled_timestamp": 1517251200000,
"ft_is_entry": True,
"ft_order_tag": "",
},
{
"amount": 0.00957442,
"safe_price": 0.10496853383458644,
"ft_order_side": "sell",
"order_filled_timestamp": 1517265300000,
"ft_is_entry": False,
"ft_order_tag": "roi",
},
],
[
{
"amount": 0.0097064,
"safe_price": 0.10302485,
"ft_order_side": "buy",
"order_filled_timestamp": 1517283000000,
"ft_is_entry": True,
"ft_order_tag": "",
},
{
"amount": 0.0097064,
"safe_price": 0.10354126528822055,
"ft_order_side": "sell",
"order_filled_timestamp": 1517285400000,
"ft_is_entry": False,
"ft_order_tag": "roi",
},
],
],
}
)
pd.testing.assert_frame_equal(results, expected)
assert "orders" in results.columns
data_pair = processed[pair]
# Called once per order
assert backtesting.strategy.order_filled.call_count == 4
for _, t in results.iterrows():
assert len(t["orders"]) == 2
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
# Check open trade rate aligns to open rate
assert not ln.empty
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate aligns to close rate or is between high and low
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
assert round(ln1.iloc[0]["open"], 6) == round(t["close_rate"], 6) or round(
ln1.iloc[0]["low"], 6
) < round(t["close_rate"], 6) < round(ln1.iloc[0]["high"], 6)
@pytest.mark.parametrize("use_detail", [True, False])
def test_backtest_one_detail(default_conf_usdt, mocker, testdatadir, use_detail) -> None:
default_conf_usdt["use_exit_signal"] = False
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
if use_detail:
default_conf_usdt["timeframe_detail"] = "1m"
def advise_entry(df, *args, **kwargs):
# Mock function to force several entries
df.loc[(df["rsi"] < 40), "enter_long"] = 1
return df
def custom_entry_price(proposed_rate, **kwargs):
return proposed_rate * 0.997
default_conf_usdt["max_open_trades"] = 10
backtesting = Backtesting(default_conf_usdt)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.populate_entry_trend = advise_entry
backtesting.strategy.custom_entry_price = custom_entry_price
pair = "XRP/ETH"
# Pick a timerange adapted to the pair we use to test
timerange = TimeRange.parse_timerange("20191010-20191013")
data = history.load_data(datadir=testdatadir, timeframe="5m", pairs=[pair], timerange=timerange)
if use_detail:
data_1m = history.load_data(
datadir=testdatadir, timeframe="1m", pairs=[pair], timerange=timerange
)
backtesting.detail_data = data_1m
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
results = result["results"]
assert not results.empty
# Timeout settings from default_conf = entry: 10, exit: 30
assert len(results) == (2 if use_detail else 3)
assert "orders" in results.columns
data_pair = processed[pair]
data_1m_pair = data_1m[pair] if use_detail else pd.DataFrame()
late_entry = 0
for _, t in results.iterrows():
assert len(t["orders"]) == 2
entryo = t["orders"][0]
entry_ts = datetime.fromtimestamp(entryo["order_filled_timestamp"] // 1000, tz=timezone.utc)
if entry_ts > t["open_date"]:
late_entry += 1
# Get "entry fill" candle
ln = (
data_1m_pair.loc[data_1m_pair["date"] == entry_ts]
if use_detail
else data_pair.loc[data_pair["date"] == entry_ts]
)
# Check open trade rate aligns to open rate
assert not ln.empty
# assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
assert (
round(ln.iloc[0]["low"], 6) <= round(t["open_rate"], 6) <= round(ln.iloc[0]["high"], 6)
)
# check close trade rate aligns to close rate or is between high and low
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
if use_detail:
ln1_1m = data_1m_pair.loc[data_1m_pair["date"] == t["close_date"]]
assert not ln1.empty or not ln1_1m.empty
else:
assert not ln1.empty
ln2 = ln1_1m if ln1.empty else ln1
assert (
round(ln2.iloc[0]["low"], 6)
<= round(t["close_rate"], 6)
<= round(ln2.iloc[0]["high"], 6)
)
assert late_entry > 0
@pytest.mark.parametrize(
"use_detail,exp_funding_fee, exp_ff_updates",
[
(True, -0.018054162, 11),
(False, -0.01780296, 6),
],
)
def test_backtest_one_detail_futures(
default_conf_usdt, mocker, testdatadir, use_detail, exp_funding_fee, exp_ff_updates
) -> None:
default_conf_usdt["use_exit_signal"] = False
default_conf_usdt["trading_mode"] = "futures"
default_conf_usdt["margin_mode"] = "isolated"
default_conf_usdt["candle_type_def"] = CandleType.FUTURES
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/USDT:USDT"]),
)
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
default_conf_usdt["timeframe"] = "1h"
if use_detail:
default_conf_usdt["timeframe_detail"] = "5m"
def advise_entry(df, *args, **kwargs):
# Mock function to force several entries
df.loc[(df["rsi"] < 40), "enter_long"] = 1
return df
def custom_entry_price(proposed_rate, **kwargs):
return proposed_rate * 0.997
default_conf_usdt["max_open_trades"] = 10
backtesting = Backtesting(default_conf_usdt)
ff_spy = mocker.spy(backtesting.exchange, "calculate_funding_fees")
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.populate_entry_trend = advise_entry
backtesting.strategy.custom_entry_price = custom_entry_price
pair = "XRP/USDT:USDT"
# Pick a timerange adapted to the pair we use to test
timerange = TimeRange.parse_timerange("20211117-20211119")
data = history.load_data(
datadir=Path(testdatadir),
timeframe="1h",
pairs=[pair],
timerange=timerange,
candle_type=CandleType.FUTURES,
)
backtesting.load_bt_data_detail()
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
results = result["results"]
assert not results.empty
# Timeout settings from default_conf = entry: 10, exit: 30
assert len(results) == (5 if use_detail else 2)
assert "orders" in results.columns
data_pair = processed[pair]
data_1m_pair = backtesting.detail_data[pair] if use_detail else pd.DataFrame()
late_entry = 0
for _, t in results.iterrows():
assert len(t["orders"]) == 2
entryo = t["orders"][0]
entry_ts = datetime.fromtimestamp(entryo["order_filled_timestamp"] // 1000, tz=timezone.utc)
if entry_ts > t["open_date"]:
late_entry += 1
# Get "entry fill" candle
ln = (
data_1m_pair.loc[data_1m_pair["date"] == entry_ts]
if use_detail
else data_pair.loc[data_pair["date"] == entry_ts]
)
# Check open trade rate aligns to open rate
assert not ln.empty
assert (
round(ln.iloc[0]["low"], 6) <= round(t["open_rate"], 6) <= round(ln.iloc[0]["high"], 6)
)
# check close trade rate aligns to close rate or is between high and low
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
if use_detail:
ln1_1m = data_1m_pair.loc[data_1m_pair["date"] == t["close_date"]]
assert not ln1.empty or not ln1_1m.empty
else:
assert not ln1.empty
ln2 = ln1_1m if ln1.empty else ln1
assert (
round(ln2.iloc[0]["low"], 6)
<= round(t["close_rate"], 6)
<= round(ln2.iloc[0]["high"], 6)
)
assert pytest.approx(Trade.bt_trades[1].funding_fees) == exp_funding_fee
assert ff_spy.call_count == exp_ff_updates
# assert late_entry > 0
@pytest.mark.parametrize(
"use_detail,entries,max_stake,ff_updates,expected_ff",
[
(True, 50, 3000, 55, -1.18038144),
(False, 6, 360, 11, -0.14679994),
],
)
def test_backtest_one_detail_futures_funding_fees(
default_conf_usdt,
fee,
mocker,
testdatadir,
use_detail,
entries,
max_stake,
ff_updates,
expected_ff,
) -> None:
"""
Funding fees are expected to differ, as the maximum position size differs.
"""
default_conf_usdt["use_exit_signal"] = False
default_conf_usdt["trading_mode"] = "futures"
default_conf_usdt["margin_mode"] = "isolated"
default_conf_usdt["candle_type_def"] = CandleType.FUTURES
default_conf_usdt["minimal_roi"] = {"0": 1}
default_conf_usdt["dry_run_wallet"] = 100000
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/USDT:USDT"]),
)
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
default_conf_usdt["timeframe"] = "1h"
if use_detail:
default_conf_usdt["timeframe_detail"] = "5m"
patch_exchange(mocker)
def advise_entry(df, *args, **kwargs):
# Mock function to force several entries
df.loc[:, "enter_long"] = 1
return df
def adjust_trade_position(trade, current_time, **kwargs):
if current_time > datetime(2021, 11, 18, 2, 0, 0, tzinfo=timezone.utc):
return None
return default_conf_usdt["stake_amount"]
default_conf_usdt["max_open_trades"] = 1
backtesting = Backtesting(default_conf_usdt)
ff_spy = mocker.spy(backtesting.exchange, "calculate_funding_fees")
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.populate_entry_trend = advise_entry
backtesting.strategy.adjust_trade_position = adjust_trade_position
backtesting.strategy.leverage = lambda **kwargs: 1
backtesting.strategy.position_adjustment_enable = True
pair = "XRP/USDT:USDT"
# Pick a timerange adapted to the pair we use to test
timerange = TimeRange.parse_timerange("20211117-20211119")
data = history.load_data(
datadir=Path(testdatadir),
timeframe="1h",
pairs=[pair],
timerange=timerange,
candle_type=CandleType.FUTURES,
)
backtesting.load_bt_data_detail()
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
results = result["results"]
assert not results.empty
# Only one result - as we're not selling.
assert len(results) == 1
assert "orders" in results.columns
# funding_fees have been calculated for each funding-fee candle
# the trade is open for 26 hours - hence we expect the 8h fee to apply 4 times.
# Additional counts will happen due each successful entry, which needs to call this, too.
assert ff_spy.call_count == ff_updates
for t in Trade.bt_trades:
# At least 6 adjustment orders
assert t.nr_of_successful_entries == entries
# Funding fees will vary depending on the number of adjustment orders
# That number is a lot higher with detail data.
assert t.max_stake_amount == max_stake
assert pytest.approx(t.funding_fees) == expected_ff
def test_backtest_timedout_entry_orders(default_conf, fee, mocker, testdatadir) -> None:
# This strategy intentionally places unfillable orders.
default_conf["strategy"] = "StrategyTestV3CustomEntryPrice"
default_conf["startup_candle_count"] = 0
# Cancel unfilled order after 4 minutes on 5m timeframe.
default_conf["unfilledtimeout"] = {"entry": 4}
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
patch_exchange(mocker)
default_conf["max_open_trades"] = 1
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
# Testing dataframe contains 11 candles. Expecting 10 timed out orders.
timerange = TimeRange("date", "date", 1517227800, 1517231100)
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
min_date, max_date = get_timerange(data)
result = backtesting.backtest(
processed=deepcopy(data),
start_date=min_date,
end_date=max_date,
)
assert result["timedout_entry_orders"] == 10
def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None:
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 1
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
# Run a backtesting for an exiting 1min timeframe
timerange = TimeRange.parse_timerange("1510688220-1510700340")
data = history.load_data(
datadir=testdatadir, timeframe="1m", pairs=["UNITTEST/BTC"], timerange=timerange
)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
)
assert not results["results"].empty
assert len(results["results"]) == 1
def test_backtest_trim_no_data_left(default_conf, fee, mocker, testdatadir) -> None:
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 10
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
timerange = TimeRange("date", None, 1517227800, 0)
backtesting.required_startup = 100
backtesting.timerange = timerange
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
df = data["UNITTEST/BTC"]
df["date"] = df.loc[:, "date"] - timedelta(days=1)
# Trimming 100 candles, so after 2nd trimming, no candle is left.
df = df.iloc[:100]
data["XRP/USDT"] = df
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
def test_processed(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
dict_of_tickerrows = load_data_test("raise", testdatadir)
dataframes = backtesting.strategy.advise_all_indicators(dict_of_tickerrows)
dataframe = dataframes["UNITTEST/BTC"]
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ["close", "high", "low", "open", "date", "ema10", "rsi", "fastd", "plus_di"]:
assert col in cols
def test_backtest_dataprovider_analyzed_df(default_conf, fee, mocker, testdatadir) -> None:
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 10
default_conf["runmode"] = "backtest"
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=100000)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
timerange = TimeRange("date", None, 1517227800, 0)
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
count = 0
def tmp_confirm_entry(pair, current_time, **kwargs):
nonlocal count
dp = backtesting.strategy.dp
df, _ = dp.get_analyzed_dataframe(pair, backtesting.strategy.timeframe)
current_candle = df.iloc[-1].squeeze()
assert current_candle["enter_long"] == 1
candle_date = timeframe_to_next_date(backtesting.strategy.timeframe, current_candle["date"])
assert candle_date == current_time
# These asserts don't properly raise as they are nested,
# therefore we increment count and assert for that.
df = dp.get_pair_dataframe(pair, backtesting.strategy.timeframe)
prior_time = timeframe_to_prev_date(
backtesting.strategy.timeframe, candle_date - timedelta(seconds=1)
)
assert prior_time == df.iloc[-1].squeeze()["date"]
assert df.iloc[-1].squeeze()["date"] < current_time
count += 1
backtesting.strategy.confirm_trade_entry = tmp_confirm_entry
backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
assert count == 5
def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None:
# While this test IS a copy of test_backtest_pricecontours, it's needed to ensure
# results do not carry-over to the next run, which is not given by using parametrize.
patch_exchange(mocker)
default_conf["_strategy_protections"] = [
{
"method": "CooldownPeriod",
"stop_duration": 3,
}
]
default_conf["enable_protections"] = True
default_conf["timeframe"] = "1m"
default_conf["max_open_trades"] = 1
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
tests = [
["sine", 9],
["raise", 10],
["lower", 0],
["sine", 9],
["raise", 10],
]
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
# While entry-signals are unrealistic, running backtesting
# over and over again should not cause different results
for [contour, numres] in tests:
# Debug output for random test failure
print(f"{contour}, {numres}")
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
)
assert len(results["results"]) == numres
@pytest.mark.parametrize(
"protections,contour,expected",
[
(None, "sine", 35),
(None, "raise", 19),
(None, "lower", 0),
(None, "sine", 35),
(None, "raise", 19),
([{"method": "CooldownPeriod", "stop_duration": 3}], "sine", 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], "raise", 10),
([{"method": "CooldownPeriod", "stop_duration": 3}], "lower", 0),
([{"method": "CooldownPeriod", "stop_duration": 3}], "sine", 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], "raise", 10),
],
)
def test_backtest_pricecontours(
default_conf, mocker, testdatadir, protections, contour, expected
) -> None:
if protections:
default_conf["_strategy_protections"] = protections
default_conf["enable_protections"] = True
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
# While entry-signals are unrealistic, running backtesting
# over and over again should not cause different results
default_conf["timeframe"] = "1m"
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
backtesting.strategy.max_open_trades = 1
backtesting.config.update({"max_open_trades": 1})
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
)
assert len(results["results"]) == expected
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our StrategyTest
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
default_conf["max_open_trades"] = 10
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_entry = fun # Override
backtesting.strategy.advise_exit = fun # Override
result = backtesting.backtest(**backtest_conf)
assert result["results"].empty
def test_backtest_only_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our StrategyTest
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
default_conf["max_open_trades"] = 10
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_entry = fun # Override
backtesting.strategy.advise_exit = fun # Override
result = backtesting.backtest(**backtest_conf)
assert result["results"].empty
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_fee", fee)
default_conf["max_open_trades"] = 10
default_conf["runmode"] = "backtest"
backtest_conf = _make_backtest_conf(
mocker, conf=default_conf, pair="UNITTEST/BTC", datadir=testdatadir
)
default_conf["timeframe"] = "1m"
backtesting = Backtesting(default_conf)
backtesting.required_startup = 0
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_entry = _trend_alternate # Override
backtesting.strategy.advise_exit = _trend_alternate # Override
result = backtesting.backtest(**backtest_conf)
# 200 candles in backtest data
# won't buy on first (shifted by 1)
# 100 buys signals
results = result["results"]
assert len(results) == 100
# Cached data should be 200
analyzed_df = backtesting.dataprovider.get_analyzed_dataframe("UNITTEST/BTC", "1m")[0]
assert len(analyzed_df) == 200
# Expect last candle to be 1 below end date (as the last candle is assumed as "incomplete"
# during backtesting)
expected_last_candle_date = backtest_conf["end_date"] - timedelta(minutes=1)
assert analyzed_df.iloc[-1]["date"].to_pydatetime() == expected_last_candle_date
# One trade was force-closed at the end
assert len(results.loc[results["is_open"]]) == 0
@pytest.mark.parametrize("pair", ["ADA/BTC", "LTC/BTC"])
@pytest.mark.parametrize("tres", [0, 20, 30])
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
"""
if metadata["pair"] in ("ETH/BTC", "LTC/BTC"):
multi = 20
else:
multi = 18
dataframe["enter_long"] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe["exit_long"] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
dataframe["enter_short"] = 0
dataframe["exit_short"] = 0
return dataframe
default_conf["runmode"] = "backtest"
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_fee", fee)
patch_exchange(mocker)
pairs = ["ADA/BTC", "DASH/BTC", "ETH/BTC", "LTC/BTC", "NXT/BTC"]
data = history.load_data(datadir=testdatadir, timeframe="5m", pairs=pairs)
# Only use 500 lines to increase performance
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
if tres > 0:
data[pair] = data[pair][tres:].reset_index()
default_conf["timeframe"] = "5m"
default_conf["max_open_trades"] = 3
backtesting = Backtesting(default_conf)
vr_spy = mocker.spy(backtesting, "validate_row")
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.bot_loop_start = MagicMock()
backtesting.strategy.advise_entry = _trend_alternate_hold # Override
backtesting.strategy.advise_exit = _trend_alternate_hold # Override
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
backtest_conf = {
"processed": deepcopy(processed),
"start_date": min_date,
"end_date": max_date,
}
results = backtesting.backtest(**backtest_conf)
# bot_loop_start is called once per candle.
assert backtesting.strategy.bot_loop_start.call_count == 499
# Validated row once per candle and pair
assert vr_spy.call_count == 2495
# List of calls pair args - in batches of 5 (s)
calls_per_candle = defaultdict(list)
for call in vr_spy.call_args_list:
calls_per_candle[call[0][3]].append(call[0][1])
all_orients = [x for _, x in calls_per_candle.items()]
distinct_calls = [list(x) for x in set(tuple(x) for x in all_orients)]
# All calls must be made for the full pairlist
assert all(len(x) == 5 for x in distinct_calls)
# order varied - and is not always identical
assert not all(
x == ["ADA/BTC", "DASH/BTC", "ETH/BTC", "LTC/BTC", "NXT/BTC"] for x in distinct_calls
)
# But some calls should've kept the original ordering
assert any(
x == ["ADA/BTC", "DASH/BTC", "ETH/BTC", "LTC/BTC", "NXT/BTC"] for x in distinct_calls
)
assert (
# Ordering can be different, but should be one of the following
any(x == ["ETH/BTC", "ADA/BTC", "DASH/BTC", "LTC/BTC", "NXT/BTC"] for x in distinct_calls)
or any(
x == ["ETH/BTC", "LTC/BTC", "ADA/BTC", "DASH/BTC", "NXT/BTC"] for x in distinct_calls
)
)
# Make sure we have parallel trades
assert len(evaluate_result_multi(results["results"], "5m", 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results["results"], "5m", 3)) == 0
# Cached data correctly removed amounts
offset = 1 if tres == 0 else 0
removed_candles = len(data[pair]) - offset
assert len(backtesting.dataprovider.get_analyzed_dataframe(pair, "5m")[0]) == removed_candles
assert (
len(backtesting.dataprovider.get_analyzed_dataframe("NXT/BTC", "5m")[0])
== len(data["NXT/BTC"]) - 1
)
backtesting.strategy.max_open_trades = 1
backtesting.config.update({"max_open_trades": 1})
backtest_conf = {
"processed": deepcopy(processed),
"start_date": min_date,
"end_date": max_date,
}
results = backtesting.backtest(**backtest_conf)
assert len(evaluate_result_multi(results["results"], "5m", 1)) == 0
@pytest.mark.parametrize("use_detail", [True, False])
@pytest.mark.parametrize("pair", ["ADA/USDT", "LTC/USDT"])
@pytest.mark.parametrize("tres", [0, 20, 30])
def test_backtest_multi_pair_detail(
default_conf_usdt,
fee,
mocker,
tres,
pair,
use_detail,
):
"""
literally the same as test_backtest_multi_pair - but with artificial data
and detail timeframe.
"""
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
"""
if metadata["pair"] in ("ETH/USDT", "LTC/USDT"):
multi = 20
else:
multi = 18
dataframe["enter_long"] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe["exit_long"] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
dataframe["enter_short"] = 0
dataframe["exit_short"] = 0
return dataframe
default_conf_usdt.update(
{
"runmode": "backtest",
"stoploss": -1.0,
"minimal_roi": {"0": 100},
}
)
if use_detail:
default_conf_usdt["timeframe_detail"] = "1m"
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_fee", fee)
patch_exchange(mocker)
raw_candles_1m = generate_test_data("1m", 1000, "2022-01-03 12:00:00+00:00")
raw_candles = ohlcv_fill_up_missing_data(raw_candles_1m, "5m", "dummy")
pairs = ["ADA/USDT", "DASH/USDT", "ETH/USDT", "LTC/USDT", "NXT/USDT"]
data = {pair: raw_candles for pair in pairs}
detail_data = {pair: raw_candles_1m for pair in pairs}
# Only use 500 lines to increase performance
data = trim_dictlist(data, -200)
# Remove data for one pair from the beginning of the data
if tres > 0:
data[pair] = data[pair][tres:].reset_index()
default_conf_usdt["timeframe"] = "5m"
default_conf_usdt["max_open_trades"] = 3
backtesting = Backtesting(default_conf_usdt)
vr_spy = mocker.spy(backtesting, "validate_row")
bl_spy = mocker.spy(backtesting, "backtest_loop")
backtesting.detail_data = detail_data
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.bot_loop_start = MagicMock()
backtesting.strategy.advise_entry = _trend_alternate_hold # Override
backtesting.strategy.advise_exit = _trend_alternate_hold # Override
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
backtest_conf = {
"processed": deepcopy(processed),
"start_date": min_date,
"end_date": max_date,
}
results = backtesting.backtest(**backtest_conf)
# bot_loop_start is called once per candle.
assert backtesting.strategy.bot_loop_start.call_count == 199
# Validated row once per candle and pair
assert vr_spy.call_count == 995
if use_detail:
# Backtest loop is called once per candle per pair
# Exact numbers depend on trade state - but should be around 3_800
assert bl_spy.call_count > 1_350
assert bl_spy.call_count < 1_500
else:
assert bl_spy.call_count < 995
# Make sure we have parallel trades
assert len(evaluate_result_multi(results["results"], "5m", 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results["results"], "5m", 3)) == 0
# Cached data correctly removed amounts
offset = 1 if tres == 0 else 0
removed_candles = len(data[pair]) - offset
assert len(backtesting.dataprovider.get_analyzed_dataframe(pair, "5m")[0]) == removed_candles
assert (
len(backtesting.dataprovider.get_analyzed_dataframe("NXT/USDT", "5m")[0])
== len(data["NXT/USDT"]) - 1
)
backtesting.strategy.max_open_trades = 1
backtesting.config.update({"max_open_trades": 1})
backtest_conf = {
"processed": deepcopy(processed),
"start_date": min_date,
"end_date": max_date,
}
results = backtesting.backtest(**backtest_conf)
assert len(evaluate_result_multi(results["results"], "5m", 1)) == 0
@pytest.mark.parametrize("use_detail", [True, False])
def test_backtest_multi_pair_long_short_switch(
default_conf_usdt,
fee,
mocker,
use_detail,
):
"""
literally the same as test_backtest_multi_pair - but with artificial data
and detail timeframe.
"""
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
"""
if metadata["pair"] in ("ETH/USDT", "LTC/USDT"):
multi = 20
else:
multi = 18
dataframe["enter_long"] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe["exit_long"] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
dataframe["enter_short"] = dataframe["exit_long"]
dataframe["exit_short"] = dataframe["enter_long"]
return dataframe
default_conf_usdt.update(
{
"runmode": "backtest",
"timeframe": "5m",
"max_open_trades": 1,
"stoploss": -1.0,
"minimal_roi": {"0": 100},
"margin_mode": "isolated",
"trading_mode": "futures",
}
)
if use_detail:
default_conf_usdt["timeframe_detail"] = "1m"
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_fee", fee)
patch_exchange(mocker)
raw_candles_1m = generate_test_data("1m", 2500, "2022-01-03 12:00:00+00:00")
raw_candles = ohlcv_fill_up_missing_data(raw_candles_1m, "5m", "dummy")
pairs = [
"ETH/USDT:USDT",
]
default_conf_usdt["exchange"]["pair_whitelist"] = pairs
# Fake whitelist to avoid some mock data issues
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
data = {pair: raw_candles for pair in pairs}
detail_data = {pair: raw_candles_1m for pair in pairs}
# Only use 500 lines to increase performance
data = trim_dictlist(data, -500)
backtesting = Backtesting(default_conf_usdt)
vr_spy = mocker.spy(backtesting, "validate_row")
bl_spy = mocker.spy(backtesting, "backtest_loop")
backtesting.detail_data = detail_data
backtesting.funding_fee_timeframe_secs = 3600 * 8 # 8h
backtesting.futures_data = {pair: pd.DataFrame() for pair in pairs}
backtesting.strategylist[0].can_short = True
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.bot_loop_start = MagicMock()
backtesting.strategy.advise_entry = _trend_alternate_hold # Override
backtesting.strategy.advise_exit = _trend_alternate_hold # Override
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
backtest_conf = {
"processed": deepcopy(processed),
"start_date": min_date,
"end_date": max_date,
}
results = backtesting.backtest(**backtest_conf)
# bot_loop_start is called once per candle.
assert backtesting.strategy.bot_loop_start.call_count == 499
# Validated row once per candle and pair
assert vr_spy.call_count == 499
if use_detail:
# Backtest loop is called once per candle per pair
assert bl_spy.call_count == 1071
else:
assert bl_spy.call_count == 479
# Make sure we have parallel trades
assert len(evaluate_result_multi(results["results"], "5m", 0)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results["results"], "5m", 1)) == 0
# Expect 26 results initially
assert len(results["results"]) == 30
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
patch_exchange(mocker)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch("freqtrade.optimize.backtesting.generate_backtest_stats")
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--datadir",
str(testdatadir),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
"Parameter --enable-position-stacking detected ...",
]
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
patch_exchange(mocker)
backtestmock = MagicMock(
return_value={
"results": pd.DataFrame(columns=BT_DATA_COLUMNS),
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
}
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
text_table_mock = MagicMock()
tag_metrics_mock = MagicMock()
strattable_mock = MagicMock()
strat_summary = MagicMock()
mocker.patch.multiple(
"freqtrade.optimize.optimize_reports.bt_output",
text_table_bt_results=text_table_mock,
text_table_strategy=strattable_mock,
)
mocker.patch.multiple(
"freqtrade.optimize.optimize_reports.optimize_reports",
generate_pair_metrics=MagicMock(),
generate_tag_metrics=tag_metrics_mock,
generate_strategy_comparison=strat_summary,
generate_daily_stats=MagicMock(),
)
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
"--strategy-list",
CURRENT_TEST_STRATEGY,
"StrategyTestV2",
]
args = get_args(args)
start_backtesting(args)
# 2 backtests, 6 tables (entry, exit, mixed - each 2x)
assert backtestmock.call_count == 2
assert text_table_mock.call_count == 4
assert strattable_mock.call_count == 1
assert tag_metrics_mock.call_count == 6
assert strat_summary.call_count == 1
# check the logs, that will contain the backtest result
exists = [
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
"Parameter --enable-position-stacking detected ...",
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
"Running backtesting for Strategy StrategyTestV2",
]
for line in exists:
assert log_has(line, caplog)
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
patch_exchange(mocker)
result1 = pd.DataFrame(
{
"pair": ["XRP/BTC", "LTC/BTC"],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"open_date": pd.to_datetime(
[
"2018-01-29 18:40:00",
"2018-01-30 03:30:00",
],
utc=True,
),
"close_date": pd.to_datetime(
[
"2018-01-29 20:45:00",
"2018-01-30 05:35:00",
],
utc=True,
),
"trade_duration": [235, 40],
"is_open": [False, False],
"stake_amount": [0.01, 0.01],
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"is_short": [False, False],
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value],
}
)
result2 = pd.DataFrame(
{
"pair": ["XRP/BTC", "LTC/BTC", "ETH/BTC"],
"profit_ratio": [0.03, 0.01, 0.1],
"profit_abs": [0.01, 0.02, 0.2],
"open_date": pd.to_datetime(
["2018-01-29 18:40:00", "2018-01-30 03:30:00", "2018-01-30 05:30:00"], utc=True
),
"close_date": pd.to_datetime(
["2018-01-29 20:45:00", "2018-01-30 05:35:00", "2018-01-30 08:30:00"], utc=True
),
"trade_duration": [47, 40, 20],
"is_open": [False, False, False],
"stake_amount": [0.01, 0.01, 0.01],
"open_rate": [0.104445, 0.10302485, 0.122541],
"close_rate": [0.104969, 0.103541, 0.123541],
"is_short": [False, False, False],
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value, ExitType.STOP_LOSS.value],
}
)
backtestmock = MagicMock(
side_effect=[
{
"results": result1,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
{
"results": result2,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
]
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
"--breakdown",
"day",
"--strategy-list",
CURRENT_TEST_STRATEGY,
"StrategyTestV2",
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
"Parameter --enable-position-stacking detected ...",
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
"Running backtesting for Strategy StrategyTestV2",
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert "BACKTESTING REPORT" in captured.out
assert "EXIT REASON STATS" in captured.out
assert "DAY BREAKDOWN" in captured.out
assert "LEFT OPEN TRADES REPORT" in captured.out
assert "2017-11-14 21:17:00 -> 2017-11-14 22:59:00 | Max open trades : 1" in captured.out
assert "STRATEGY SUMMARY" in captured.out
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_futures_noliq(default_conf_usdt, mocker, caplog, testdatadir, capsys):
# Tests detail-data loading
default_conf_usdt.update(
{
"trading_mode": "futures",
"margin_mode": "isolated",
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
"strategy": CURRENT_TEST_STRATEGY,
}
)
patch_exchange(mocker)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["HULUMULU/USDT", "XRP/USDT:USDT"]),
)
# mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
patched_configuration_load_config_file(mocker, default_conf_usdt)
args = [
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1h",
]
args = get_args(args)
with pytest.raises(OperationalException, match=r"Pairs .* got no leverage tiers available\."):
start_backtesting(args)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_nomock_futures(default_conf_usdt, mocker, caplog, testdatadir, capsys):
# Tests detail-data loading
default_conf_usdt.update(
{
"trading_mode": "futures",
"margin_mode": "isolated",
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
"strategy": CURRENT_TEST_STRATEGY,
}
)
patch_exchange(mocker)
result1 = pd.DataFrame(
{
"pair": ["XRP/USDT:USDT", "XRP/USDT:USDT"],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"open_date": pd.to_datetime(
[
"2021-11-18 18:00:00",
"2021-11-18 03:00:00",
],
utc=True,
),
"close_date": pd.to_datetime(
[
"2021-11-18 20:00:00",
"2021-11-18 05:00:00",
],
utc=True,
),
"trade_duration": [235, 40],
"is_open": [False, False],
"is_short": [False, False],
"stake_amount": [0.01, 0.01],
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"exit_reason": [ExitType.ROI, ExitType.ROI],
}
)
result2 = pd.DataFrame(
{
"pair": ["XRP/USDT:USDT", "XRP/USDT:USDT", "XRP/USDT:USDT"],
"profit_ratio": [0.03, 0.01, 0.1],
"profit_abs": [0.01, 0.02, 0.2],
"open_date": pd.to_datetime(
["2021-11-19 18:00:00", "2021-11-19 03:00:00", "2021-11-19 05:00:00"], utc=True
),
"close_date": pd.to_datetime(
["2021-11-19 20:00:00", "2021-11-19 05:00:00", "2021-11-19 08:00:00"], utc=True
),
"trade_duration": [47, 40, 20],
"is_open": [False, False, False],
"is_short": [False, False, False],
"stake_amount": [0.01, 0.01, 0.01],
"open_rate": [0.104445, 0.10302485, 0.122541],
"close_rate": [0.104969, 0.103541, 0.123541],
"exit_reason": [ExitType.ROI, ExitType.ROI, ExitType.STOP_LOSS],
}
)
backtestmock = MagicMock(
side_effect=[
{
"results": result1,
"config": default_conf_usdt,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
{
"results": result2,
"config": default_conf_usdt,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
]
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/USDT:USDT"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
patched_configuration_load_config_file(mocker, default_conf_usdt)
args = [
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1h",
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
"Parameter -i/--timeframe detected ... Using timeframe: 1h ...",
f"Using data directory: {testdatadir} ...",
"Loading data from 2021-11-17 01:00:00 up to 2021-11-21 04:00:00 (4 days).",
"Backtesting with data from 2021-11-17 21:00:00 up to 2021-11-21 04:00:00 (3 days).",
"XRP/USDT:USDT, funding_rate, 8h, data starts at 2021-11-18 00:00:00",
"XRP/USDT:USDT, mark, 8h, data starts at 2021-11-18 00:00:00",
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert "BACKTESTING REPORT" in captured.out
assert "EXIT REASON STATS" in captured.out
assert "LEFT OPEN TRADES REPORT" in captured.out
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat_nomock_detail(
default_conf, mocker, caplog, testdatadir, capsys
):
# Tests detail-data loading
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
patch_exchange(mocker)
result1 = pd.DataFrame(
{
"pair": ["XRP/BTC", "LTC/BTC"],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"open_date": pd.to_datetime(
[
"2018-01-29 18:40:00",
"2018-01-30 03:30:00",
],
utc=True,
),
"close_date": pd.to_datetime(
[
"2018-01-29 20:45:00",
"2018-01-30 05:35:00",
],
utc=True,
),
"trade_duration": [235, 40],
"is_open": [False, False],
"is_short": [False, False],
"stake_amount": [0.01, 0.01],
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"exit_reason": [ExitType.ROI, ExitType.ROI],
}
)
result2 = pd.DataFrame(
{
"pair": ["XRP/BTC", "LTC/BTC", "ETH/BTC"],
"profit_ratio": [0.03, 0.01, 0.1],
"profit_abs": [0.01, 0.02, 0.2],
"open_date": pd.to_datetime(
["2018-01-29 18:40:00", "2018-01-30 03:30:00", "2018-01-30 05:30:00"], utc=True
),
"close_date": pd.to_datetime(
["2018-01-29 20:45:00", "2018-01-30 05:35:00", "2018-01-30 08:30:00"], utc=True
),
"trade_duration": [47, 40, 20],
"is_open": [False, False, False],
"is_short": [False, False, False],
"stake_amount": [0.01, 0.01, 0.01],
"open_rate": [0.104445, 0.10302485, 0.122541],
"close_rate": [0.104969, 0.103541, 0.123541],
"exit_reason": [ExitType.ROI, ExitType.ROI, ExitType.STOP_LOSS],
}
)
backtestmock = MagicMock(
side_effect=[
{
"results": result1,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
{
"results": result2,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
]
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/ETH"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"5m",
"--timeframe-detail",
"1m",
"--strategy-list",
CURRENT_TEST_STRATEGY,
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
"Parameter -i/--timeframe detected ... Using timeframe: 5m ...",
"Parameter --timeframe-detail detected, using 1m for intra-candle backtesting ...",
f"Using data directory: {testdatadir} ...",
"Loading data from 2019-10-11 00:00:00 up to 2019-10-13 11:15:00 (2 days).",
"Backtesting with data from 2019-10-11 01:40:00 up to 2019-10-13 11:15:00 (2 days).",
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert "BACKTESTING REPORT" in captured.out
assert "EXIT REASON STATS" in captured.out
assert "LEFT OPEN TRADES REPORT" in captured.out
@pytest.mark.filterwarnings("ignore:deprecated")
@pytest.mark.parametrize("run_id", ["2", "changed"])
@pytest.mark.parametrize("start_delta", [{"days": 0}, {"days": 1}, {"weeks": 1}, {"weeks": 4}])
@pytest.mark.parametrize("cache", constants.BACKTEST_CACHE_AGE)
def test_backtest_start_multi_strat_caching(
default_conf, mocker, caplog, testdatadir, run_id, start_delta, cache
):
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
patch_exchange(mocker)
backtestmock = MagicMock(
return_value={
"results": pd.DataFrame(columns=BT_DATA_COLUMNS),
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
}
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results", MagicMock())
now = min_backtest_date = datetime.now(tz=timezone.utc)
start_time = now - timedelta(**start_delta) + timedelta(hours=1)
if cache == "none":
min_backtest_date = now + timedelta(days=1)
elif cache == "day":
min_backtest_date = now - timedelta(days=1)
elif cache == "week":
min_backtest_date = now - timedelta(weeks=1)
elif cache == "month":
min_backtest_date = now - timedelta(weeks=4)
load_backtest_metadata = MagicMock(
return_value={
"StrategyTestV2": {"run_id": "1", "backtest_start_time": now.timestamp()},
"StrategyTestV3": {"run_id": run_id, "backtest_start_time": start_time.timestamp()},
}
)
load_backtest_stats = MagicMock(
side_effect=[
{
"metadata": {"StrategyTestV2": {"run_id": "1"}},
"strategy": {"StrategyTestV2": {}},
"strategy_comparison": [{"key": "StrategyTestV2"}],
},
{
"metadata": {"StrategyTestV3": {"run_id": "2"}},
"strategy": {"StrategyTestV3": {}},
"strategy_comparison": [{"key": "StrategyTestV3"}],
},
]
)
mocker.patch(
"pathlib.Path.glob",
return_value=[
Path(datetime.strftime(datetime.now(), "backtest-result-%Y-%m-%d_%H-%M-%S.json"))
],
)
mocker.patch.multiple(
"freqtrade.data.btanalysis",
load_backtest_metadata=load_backtest_metadata,
load_backtest_stats=load_backtest_stats,
)
mocker.patch("freqtrade.optimize.backtesting.get_strategy_run_id", side_effect=["1", "2", "2"])
patched_configuration_load_config_file(mocker, default_conf)
args = [
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
"--cache",
cache,
"--strategy-list",
"StrategyTestV2",
"StrategyTestV3",
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
"Loading data from 2017-11-14 20:57:00 " "up to 2017-11-14 22:59:00 (0 days).",
"Parameter --enable-position-stacking detected ...",
]
for line in exists:
assert log_has(line, caplog)
if cache == "none":
assert backtestmock.call_count == 2
exists = [
"Running backtesting for Strategy StrategyTestV2",
"Running backtesting for Strategy StrategyTestV3",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
]
elif run_id == "2" and min_backtest_date < start_time:
assert backtestmock.call_count == 0
exists = [
"Reusing result of previous backtest for StrategyTestV2",
"Reusing result of previous backtest for StrategyTestV3",
]
else:
exists = [
"Reusing result of previous backtest for StrategyTestV2",
"Running backtesting for Strategy StrategyTestV3",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
]
assert backtestmock.call_count == 1
for line in exists:
assert log_has(line, caplog)
def test_get_strategy_run_id(default_conf_usdt):
default_conf_usdt.update({"strategy": "StrategyTestV2", "max_open_trades": float("inf")})
strategy = StrategyResolver.load_strategy(default_conf_usdt)
x = get_strategy_run_id(strategy)
assert isinstance(x, str)
def test_get_backtest_metadata_filename():
# Test with a file path
filename = Path("backtest_results.json")
expected = Path("backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a file path with multiple dots in the name
filename = Path("/path/to/backtest.results.json")
expected = Path("/path/to/backtest.results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a file path with no parent directory
filename = Path("backtest_results.json")
expected = Path("backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path
filename = "/path/to/backtest_results.json"
expected = Path("/path/to/backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path with no extension
filename = "/path/to/backtest_results"
expected = Path("/path/to/backtest_results.meta")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path with multiple dots in the name
filename = "/path/to/backtest.results.json"
expected = Path("/path/to/backtest.results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path with no parent directory
filename = "backtest_results.json"
expected = Path("backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected