mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 02:12:01 +00:00
215 lines
7.8 KiB
Python
215 lines
7.8 KiB
Python
import logging
|
|
from time import time
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
import pandas as pd
|
|
import torch
|
|
from pandas import DataFrame
|
|
from torch.nn import functional as F
|
|
|
|
from freqtrade.exceptions import OperationalException
|
|
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BasePyTorchClassifier(BasePyTorchModel):
|
|
"""
|
|
A PyTorch implementation of a classifier.
|
|
User must implement fit method
|
|
|
|
Important!
|
|
|
|
- User must declare the target class names in the strategy,
|
|
under IStrategy.set_freqai_targets method.
|
|
|
|
for example, in your strategy:
|
|
```
|
|
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
|
self.freqai.class_names = ["down", "up"]
|
|
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
|
|
dataframe["close"], 'up', 'down')
|
|
|
|
return dataframe
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.class_name_to_index = {}
|
|
self.index_to_class_name = {}
|
|
|
|
def predict(
|
|
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
|
) -> tuple[DataFrame, npt.NDArray[np.int_]]:
|
|
"""
|
|
Filter the prediction features data and predict with it.
|
|
:param dk: dk: The datakitchen object
|
|
:param unfiltered_df: Full dataframe for the current backtest period.
|
|
:return:
|
|
:pred_df: dataframe containing the predictions
|
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
:raises ValueError: if 'class_names' doesn't exist in model meta_data.
|
|
"""
|
|
|
|
class_names = self.model.model_meta_data.get("class_names", None)
|
|
if not class_names:
|
|
raise ValueError(
|
|
"Missing class names. self.model.model_meta_data['class_names'] is None."
|
|
)
|
|
|
|
if not self.class_name_to_index:
|
|
self.init_class_names_to_index_mapping(class_names)
|
|
|
|
dk.find_features(unfiltered_df)
|
|
filtered_df, _ = dk.filter_features(
|
|
unfiltered_df, dk.training_features_list, training_filter=False
|
|
)
|
|
|
|
dk.data_dictionary["prediction_features"] = filtered_df
|
|
|
|
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
|
dk.data_dictionary["prediction_features"], outlier_check=True
|
|
)
|
|
|
|
x = self.data_convertor.convert_x(
|
|
dk.data_dictionary["prediction_features"], device=self.device
|
|
)
|
|
self.model.model.eval()
|
|
logits = self.model.model(x)
|
|
probs = F.softmax(logits, dim=-1)
|
|
predicted_classes = torch.argmax(probs, dim=-1)
|
|
predicted_classes_str = self.decode_class_names(predicted_classes)
|
|
# used .tolist to convert probs into an iterable, in this way Tensors
|
|
# are automatically moved to the CPU first if necessary.
|
|
pred_df_prob = DataFrame(probs.detach().tolist(), columns=class_names)
|
|
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
|
|
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
|
|
|
if dk.feature_pipeline["di"]:
|
|
dk.DI_values = dk.feature_pipeline["di"].di_values
|
|
else:
|
|
dk.DI_values = np.zeros(outliers.shape[0])
|
|
dk.do_predict = outliers
|
|
|
|
return (pred_df, dk.do_predict)
|
|
|
|
def encode_class_names(
|
|
self,
|
|
data_dictionary: dict[str, pd.DataFrame],
|
|
dk: FreqaiDataKitchen,
|
|
class_names: list[str],
|
|
):
|
|
"""
|
|
encode class name, str -> int
|
|
assuming first column of *_labels data frame to be the target column
|
|
containing the class names
|
|
"""
|
|
|
|
target_column_name = dk.label_list[0]
|
|
for split in self.splits:
|
|
label_df = data_dictionary[f"{split}_labels"]
|
|
self.assert_valid_class_names(label_df[target_column_name], class_names)
|
|
label_df[target_column_name] = list(
|
|
map(lambda x: self.class_name_to_index[x], label_df[target_column_name])
|
|
)
|
|
|
|
@staticmethod
|
|
def assert_valid_class_names(target_column: pd.Series, class_names: list[str]):
|
|
non_defined_labels = set(target_column) - set(class_names)
|
|
if len(non_defined_labels) != 0:
|
|
raise OperationalException(
|
|
f"Found non defined labels: {non_defined_labels}, ",
|
|
f"expecting labels: {class_names}",
|
|
)
|
|
|
|
def decode_class_names(self, class_ints: torch.Tensor) -> list[str]:
|
|
"""
|
|
decode class name, int -> str
|
|
"""
|
|
|
|
return list(map(lambda x: self.index_to_class_name[x.item()], class_ints))
|
|
|
|
def init_class_names_to_index_mapping(self, class_names):
|
|
self.class_name_to_index = {s: i for i, s in enumerate(class_names)}
|
|
self.index_to_class_name = {i: s for i, s in enumerate(class_names)}
|
|
logger.info(f"encoded class name to index: {self.class_name_to_index}")
|
|
|
|
def convert_label_column_to_int(
|
|
self,
|
|
data_dictionary: dict[str, pd.DataFrame],
|
|
dk: FreqaiDataKitchen,
|
|
class_names: list[str],
|
|
):
|
|
self.init_class_names_to_index_mapping(class_names)
|
|
self.encode_class_names(data_dictionary, dk, class_names)
|
|
|
|
def get_class_names(self) -> list[str]:
|
|
if not self.class_names:
|
|
raise ValueError(
|
|
"self.class_names is empty, "
|
|
"set self.freqai.class_names = ['class a', 'class b', 'class c'] "
|
|
"inside IStrategy.set_freqai_targets method."
|
|
)
|
|
|
|
return self.class_names
|
|
|
|
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
|
"""
|
|
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
|
for storing, saving, loading, and analyzing the data.
|
|
:param unfiltered_df: Full dataframe for the current training period
|
|
:return:
|
|
:model: Trained model which can be used to inference (self.predict)
|
|
"""
|
|
|
|
logger.info(f"-------------------- Starting training {pair} --------------------")
|
|
|
|
start_time = time()
|
|
|
|
features_filtered, labels_filtered = dk.filter_features(
|
|
unfiltered_df,
|
|
dk.training_features_list,
|
|
dk.label_list,
|
|
training_filter=True,
|
|
)
|
|
|
|
# split data into train/test data.
|
|
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
|
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
|
dk.fit_labels()
|
|
|
|
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
|
|
|
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
|
|
dk.feature_pipeline.fit_transform(
|
|
dd["train_features"], dd["train_labels"], dd["train_weights"]
|
|
)
|
|
)
|
|
|
|
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
|
|
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
|
|
dk.feature_pipeline.transform(
|
|
dd["test_features"], dd["test_labels"], dd["test_weights"]
|
|
)
|
|
)
|
|
|
|
logger.info(
|
|
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
|
)
|
|
logger.info(f"Training model on {len(dd['train_features'])} data points")
|
|
|
|
model = self.fit(dd, dk)
|
|
end_time = time()
|
|
|
|
logger.info(
|
|
f"-------------------- Done training {pair} "
|
|
f"({end_time - start_time:.2f} secs) --------------------"
|
|
)
|
|
|
|
return model
|