freqtrade_origin/freqtrade/freqai/data_drawer.py
2024-05-13 07:10:25 +02:00

764 lines
32 KiB
Python

import collections
import importlib
import logging
import re
import shutil
import threading
import warnings
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, Tuple, TypedDict
import numpy as np
import pandas as pd
import psutil
import rapidjson
from joblib.externals import cloudpickle
from numpy.typing import NDArray
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
FEATURE_PIPELINE = "feature_pipeline"
LABEL_PIPELINE = "label_pipeline"
TRAINDF = "trained_df"
METADATA = "metadata"
class pair_info(TypedDict):
model_filename: str
trained_timestamp: int
data_path: str
extras: dict
class FreqaiDataDrawer:
"""
Class aimed at holding all pair models/info in memory for better inferencing/retrainig/saving
/loading to/from disk.
This object remains persistent throughout live/dry.
Record of contribution:
FreqAI was developed by a group of individuals who all contributed specific skillsets to the
project.
Conception and software development:
Robert Caulk @robcaulk
Theoretical brainstorming:
Elin Törnquist @th0rntwig
Code review, software architecture brainstorming:
@xmatthias
Beta testing and bug reporting:
@bloodhunter4rc, Salah Lamkadem @ikonx, @ken11o2, @longyu, @paranoidandy, @smidelis, @smarm
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
"""
def __init__(self, full_path: Path, config: Config):
self.config = config
self.freqai_info = config.get("freqai", {})
# dictionary holding all pair metadata necessary to load in from disk
self.pair_dict: Dict[str, pair_info] = {}
# dictionary holding all actively inferenced models in memory given a model filename
self.model_dictionary: Dict[str, Any] = {}
# all additional metadata that we want to keep in ram
self.meta_data_dictionary: Dict[str, Dict[str, Any]] = {}
self.model_return_values: Dict[str, DataFrame] = {}
self.historic_data: Dict[str, Dict[str, DataFrame]] = {}
self.historic_predictions: Dict[str, DataFrame] = {}
self.full_path = full_path
self.historic_predictions_path = Path(self.full_path / "historic_predictions.pkl")
self.historic_predictions_bkp_path = Path(
self.full_path / "historic_predictions.backup.pkl"
)
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
self.load_drawer_from_disk()
self.load_historic_predictions_from_disk()
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
self.load_metric_tracker_from_disk()
self.training_queue: Dict[str, int] = {}
self.history_lock = threading.Lock()
self.save_lock = threading.Lock()
self.pair_dict_lock = threading.Lock()
self.metric_tracker_lock = threading.Lock()
self.old_DBSCAN_eps: Dict[str, float] = {}
self.empty_pair_dict: pair_info = {
"model_filename": "",
"trained_timestamp": 0,
"data_path": "",
"extras": {},
}
self.model_type = self.freqai_info.get("model_save_type", "joblib")
def update_metric_tracker(self, metric: str, value: float, pair: str) -> None:
"""
General utility for adding and updating custom metrics. Typically used
for adding training performance, train timings, inferenc timings, cpu loads etc.
"""
with self.metric_tracker_lock:
if pair not in self.metric_tracker:
self.metric_tracker[pair] = {}
if metric not in self.metric_tracker[pair]:
self.metric_tracker[pair][metric] = {"timestamp": [], "value": []}
timestamp = int(datetime.now(timezone.utc).timestamp())
self.metric_tracker[pair][metric]["value"].append(value)
self.metric_tracker[pair][metric]["timestamp"].append(timestamp)
def collect_metrics(self, time_spent: float, pair: str):
"""
Add metrics to the metric tracker dictionary
"""
load1, load5, load15 = psutil.getloadavg()
cpus = psutil.cpu_count()
self.update_metric_tracker("train_time", time_spent, pair)
self.update_metric_tracker("cpu_load1min", load1 / cpus, pair)
self.update_metric_tracker("cpu_load5min", load5 / cpus, pair)
self.update_metric_tracker("cpu_load15min", load15 / cpus, pair)
def load_global_metadata_from_disk(self):
"""
Locate and load a previously saved global metadata in present model folder.
"""
exists = self.global_metadata_path.is_file()
if exists:
with self.global_metadata_path.open("r") as fp:
metatada_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
return metatada_dict
return {}
def load_drawer_from_disk(self):
"""
Locate and load a previously saved data drawer full of all pair model metadata in
present model folder.
Load any existing metric tracker that may be present.
"""
exists = self.pair_dictionary_path.is_file()
if exists:
with self.pair_dictionary_path.open("r") as fp:
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
else:
logger.info("Could not find existing datadrawer, starting from scratch")
def load_metric_tracker_from_disk(self):
"""
Tries to load an existing metrics dictionary if the user
wants to collect metrics.
"""
if self.freqai_info.get("write_metrics_to_disk", False):
exists = self.metric_tracker_path.is_file()
if exists:
with self.metric_tracker_path.open("r") as fp:
self.metric_tracker = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
logger.info("Loading existing metric tracker from disk.")
else:
logger.info("Could not find existing metric tracker, starting from scratch")
def load_historic_predictions_from_disk(self):
"""
Locate and load a previously saved historic predictions.
:return: bool - whether or not the drawer was located
"""
exists = self.historic_predictions_path.is_file()
if exists:
try:
with self.historic_predictions_path.open("rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.info(
f"Found existing historic predictions at {self.full_path}, but beware "
"that statistics may be inaccurate if the bot has been offline for "
"an extended period of time."
)
except EOFError:
logger.warning(
"Historical prediction file was corrupted. Trying to load backup file."
)
with self.historic_predictions_bkp_path.open("rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.warning("FreqAI successfully loaded the backup historical predictions file.")
else:
logger.info("Could not find existing historic_predictions, starting from scratch")
return exists
def save_historic_predictions_to_disk(self):
"""
Save historic predictions pickle to disk
"""
with self.historic_predictions_path.open("wb") as fp:
cloudpickle.dump(self.historic_predictions, fp, protocol=cloudpickle.DEFAULT_PROTOCOL)
# create a backup
shutil.copy(self.historic_predictions_path, self.historic_predictions_bkp_path)
def save_metric_tracker_to_disk(self):
"""
Save metric tracker of all pair metrics collected.
"""
with self.save_lock:
with self.metric_tracker_path.open("w") as fp:
rapidjson.dump(
self.metric_tracker,
fp,
default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE,
)
def save_drawer_to_disk(self) -> None:
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with self.save_lock:
with self.pair_dictionary_path.open("w") as fp:
rapidjson.dump(
self.pair_dict, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE
)
def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
"""
Save global metadata json to disk
"""
with self.save_lock:
with self.global_metadata_path.open("w") as fp:
rapidjson.dump(
metadata, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE
)
def np_encoder(self, object):
if isinstance(object, np.generic):
return object.item()
def get_pair_dict_info(self, pair: str) -> Tuple[str, int]:
"""
Locate and load existing model metadata from persistent storage. If not located,
create a new one and append the current pair to it and prepare it for its first
training
:param pair: str: pair to lookup
:return:
model_filename: str = unique filename used for loading persistent objects from disk
trained_timestamp: int = the last time the coin was trained
"""
pair_dict = self.pair_dict.get(pair)
if pair_dict:
model_filename = pair_dict["model_filename"]
trained_timestamp = pair_dict["trained_timestamp"]
else:
self.pair_dict[pair] = self.empty_pair_dict.copy()
model_filename = ""
trained_timestamp = 0
return model_filename, trained_timestamp
def set_pair_dict_info(self, metadata: dict) -> None:
pair_in_dict = self.pair_dict.get(metadata["pair"])
if pair_in_dict:
return
else:
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
return
def set_initial_return_values(
self, pair: str, pred_df: DataFrame, dataframe: DataFrame
) -> None:
"""
Set the initial return values to the historical predictions dataframe. This avoids needing
to repredict on historical candles, and also stores historical predictions despite
retrainings (so stored predictions are true predictions, not just inferencing on trained
data).
We also aim to keep the date from historical predictions so that the FreqUI displays
zeros during any downtime (between FreqAI reloads).
"""
new_pred = pred_df.copy()
# set new_pred values to nans (we want to signal to user that there was nothing
# historically made during downtime. The newest pred will get appended later in
# append_model_predictions)
new_pred["date_pred"] = dataframe["date"]
# set everything to nan except date_pred
columns_to_nan = new_pred.columns.difference(["date_pred", "date"])
new_pred[columns_to_nan] = None
hist_preds = self.historic_predictions[pair].copy()
# ensure both dataframes have the same date format so they can be merged
new_pred["date_pred"] = pd.to_datetime(new_pred["date_pred"])
hist_preds["date_pred"] = pd.to_datetime(hist_preds["date_pred"])
# find the closest common date between new_pred and historic predictions
# and cut off the new_pred dataframe at that date
common_dates = pd.merge(new_pred, hist_preds, on="date_pred", how="inner")
if len(common_dates.index) > 0:
new_pred = new_pred.iloc[len(common_dates) :]
else:
logger.warning(
"No common dates found between new predictions and historic "
"predictions. You likely left your FreqAI instance offline "
f"for more than {len(dataframe.index)} candles."
)
# Pandas warns that its keeping dtypes of non NaN columns...
# yea we know and we already want that behavior. Ignoring.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
# reindex new_pred columns to match the historic predictions dataframe
new_pred_reindexed = new_pred.reindex(columns=hist_preds.columns)
df_concat = pd.concat([hist_preds, new_pred_reindexed], ignore_index=True)
# any missing values will get zeroed out so users can see the exact
# downtime in FreqUI
df_concat = df_concat.fillna(0)
self.historic_predictions[pair] = df_concat
self.model_return_values[pair] = df_concat.tail(len(dataframe.index)).reset_index(drop=True)
def append_model_predictions(
self,
pair: str,
predictions: DataFrame,
do_preds: NDArray[np.int_],
dk: FreqaiDataKitchen,
strat_df: DataFrame,
) -> None:
"""
Append model predictions to historic predictions dataframe, then set the
strategy return dataframe to the tail of the historic predictions. The length of
the tail is equivalent to the length of the dataframe that entered FreqAI from
the strategy originally. Doing this allows FreqUI to always display the correct
historic predictions.
"""
len_df = len(strat_df)
index = self.historic_predictions[pair].index[-1:]
columns = self.historic_predictions[pair].columns
zeros_df = pd.DataFrame(np.zeros((1, len(columns))), index=index, columns=columns)
self.historic_predictions[pair] = pd.concat(
[self.historic_predictions[pair], zeros_df], ignore_index=True, axis=0
)
df = self.historic_predictions[pair]
# model outputs and associated statistics
for label in predictions.columns:
label_loc = df.columns.get_loc(label)
pred_label_loc = predictions.columns.get_loc(label)
df.iloc[-1, label_loc] = predictions.iloc[-1, pred_label_loc]
if df[label].dtype == object:
continue
label_mean_loc = df.columns.get_loc(f"{label}_mean")
label_std_loc = df.columns.get_loc(f"{label}_std")
df.iloc[-1, label_mean_loc] = dk.data["labels_mean"][label]
df.iloc[-1, label_std_loc] = dk.data["labels_std"][label]
# outlier indicators
do_predict_loc = df.columns.get_loc("do_predict")
df.iloc[-1, do_predict_loc] = do_preds[-1]
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
DI_values_loc = df.columns.get_loc("DI_values")
df.iloc[-1, DI_values_loc] = dk.DI_values[-1]
# extra values the user added within custom prediction model
if dk.data["extra_returns_per_train"]:
rets = dk.data["extra_returns_per_train"]
for return_str in rets:
return_loc = df.columns.get_loc(return_str)
df.iloc[-1, return_loc] = rets[return_str]
high_price_loc = df.columns.get_loc("high_price")
high_loc = strat_df.columns.get_loc("high")
df.iloc[-1, high_price_loc] = strat_df.iloc[-1, high_loc]
low_price_loc = df.columns.get_loc("low_price")
low_loc = strat_df.columns.get_loc("low")
df.iloc[-1, low_price_loc] = strat_df.iloc[-1, low_loc]
close_price_loc = df.columns.get_loc("close_price")
close_loc = strat_df.columns.get_loc("close")
df.iloc[-1, close_price_loc] = strat_df.iloc[-1, close_loc]
date_pred_loc = df.columns.get_loc("date_pred")
date_loc = strat_df.columns.get_loc("date")
df.iloc[-1, date_pred_loc] = strat_df.iloc[-1, date_loc]
self.model_return_values[pair] = df.tail(len_df).reset_index(drop=True)
def attach_return_values_to_return_dataframe(
self, pair: str, dataframe: DataFrame
) -> DataFrame:
"""
Attach the return values to the strat dataframe
:param dataframe: DataFrame = strategy dataframe
:return: DataFrame = strat dataframe with return values attached
"""
df = self.model_return_values[pair]
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
return dataframe
def return_null_values_to_strategy(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> None:
"""
Build 0 filled dataframe to return to strategy
"""
dk.find_features(dataframe)
dk.find_labels(dataframe)
full_labels = dk.label_list + dk.unique_class_list
for label in full_labels:
dataframe[label] = 0
dataframe[f"{label}_mean"] = 0
dataframe[f"{label}_std"] = 0
dataframe["do_predict"] = 0
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
dataframe["DI_values"] = 0
if dk.data["extra_returns_per_train"]:
rets = dk.data["extra_returns_per_train"]
for return_str in rets:
dataframe[return_str] = 0
dk.return_dataframe = dataframe
def purge_old_models(self) -> None:
num_keep = self.freqai_info["purge_old_models"]
if not num_keep:
return
elif isinstance(num_keep, bool):
num_keep = 2
model_folders = [x for x in self.full_path.iterdir() if x.is_dir()]
pattern = re.compile(r"sub-train-(\w+)_(\d{10})")
delete_dict: Dict[str, Any] = {}
for dir in model_folders:
result = pattern.match(str(dir.name))
if result is None:
continue
coin = result.group(1)
timestamp = result.group(2)
if coin not in delete_dict:
delete_dict[coin] = {}
delete_dict[coin]["num_folders"] = 1
delete_dict[coin]["timestamps"] = {int(timestamp): dir}
else:
delete_dict[coin]["num_folders"] += 1
delete_dict[coin]["timestamps"][int(timestamp)] = dir
for coin in delete_dict:
if delete_dict[coin]["num_folders"] > num_keep:
sorted_dict = collections.OrderedDict(
sorted(delete_dict[coin]["timestamps"].items())
)
num_delete = len(sorted_dict) - num_keep
deleted = 0
for k, v in sorted_dict.items():
if deleted >= num_delete:
break
logger.info(f"Freqai purging old model file {v}")
shutil.rmtree(v)
deleted += 1
def save_metadata(self, dk: FreqaiDataKitchen) -> None:
"""
Saves only metadata for backtesting studies if user prefers
not to save model data. This saves tremendous amounts of space
for users generating huge studies.
This is only active when `save_backtest_models`: false (not default)
"""
if not dk.data_path.is_dir():
dk.data_path.mkdir(parents=True, exist_ok=True)
save_path = Path(dk.data_path)
dk.data["data_path"] = str(dk.data_path)
dk.data["model_filename"] = str(dk.model_filename)
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
dk.data["label_list"] = dk.label_list
with (save_path / f"{dk.model_filename}_{METADATA}.json").open("w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
return
def save_data(self, model: Any, coin: str, dk: FreqaiDataKitchen) -> None:
"""
Saves all data associated with a model for a single sub-train time range
:param model: User trained model which can be reused for inferencing to generate
predictions
"""
if not dk.data_path.is_dir():
dk.data_path.mkdir(parents=True, exist_ok=True)
save_path = Path(dk.data_path)
# Save the trained model
if self.model_type == "joblib":
with (save_path / f"{dk.model_filename}_model.joblib").open("wb") as fp:
cloudpickle.dump(model, fp)
elif self.model_type == "keras":
model.save(save_path / f"{dk.model_filename}_model.h5")
elif self.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
model.save(save_path / f"{dk.model_filename}_model.zip")
dk.data["data_path"] = str(dk.data_path)
dk.data["model_filename"] = str(dk.model_filename)
dk.data["training_features_list"] = dk.training_features_list
dk.data["label_list"] = dk.label_list
# store the metadata
with (save_path / f"{dk.model_filename}_{METADATA}.json").open("w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
# save the pipelines to pickle files
with (save_path / f"{dk.model_filename}_{FEATURE_PIPELINE}.pkl").open("wb") as fp:
cloudpickle.dump(dk.feature_pipeline, fp)
with (save_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("wb") as fp:
cloudpickle.dump(dk.label_pipeline, fp)
# save the train data to file for post processing if desired
dk.data_dictionary["train_features"].to_pickle(
save_path / f"{dk.model_filename}_{TRAINDF}.pkl"
)
dk.data_dictionary["train_dates"].to_pickle(
save_path / f"{dk.model_filename}_trained_dates_df.pkl"
)
self.model_dictionary[coin] = model
self.pair_dict[coin]["model_filename"] = dk.model_filename
self.pair_dict[coin]["data_path"] = str(dk.data_path)
if coin not in self.meta_data_dictionary:
self.meta_data_dictionary[coin] = {}
self.meta_data_dictionary[coin][METADATA] = dk.data
self.meta_data_dictionary[coin][FEATURE_PIPELINE] = dk.feature_pipeline
self.meta_data_dictionary[coin][LABEL_PIPELINE] = dk.label_pipeline
self.save_drawer_to_disk()
return
def load_metadata(self, dk: FreqaiDataKitchen) -> None:
"""
Load only metadata into datakitchen to increase performance during
presaved backtesting (prediction file loading).
"""
with (dk.data_path / f"{dk.model_filename}_{METADATA}.json").open("r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any: # noqa: C901
"""
loads all data required to make a prediction on a sub-train time range
:returns:
:model: User trained model which can be inferenced for new predictions
"""
if not self.pair_dict[coin]["model_filename"]:
return None
if dk.live:
dk.model_filename = self.pair_dict[coin]["model_filename"]
dk.data_path = Path(self.pair_dict[coin]["data_path"])
if coin in self.meta_data_dictionary:
dk.data = self.meta_data_dictionary[coin][METADATA]
dk.feature_pipeline = self.meta_data_dictionary[coin][FEATURE_PIPELINE]
dk.label_pipeline = self.meta_data_dictionary[coin][LABEL_PIPELINE]
else:
with (dk.data_path / f"{dk.model_filename}_{METADATA}.json").open("r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
with (dk.data_path / f"{dk.model_filename}_{FEATURE_PIPELINE}.pkl").open("rb") as fp:
dk.feature_pipeline = cloudpickle.load(fp)
with (dk.data_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("rb") as fp:
dk.label_pipeline = cloudpickle.load(fp)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
# try to access model in memory instead of loading object from disk to save time
if dk.live and coin in self.model_dictionary:
model = self.model_dictionary[coin]
elif self.model_type == "joblib":
with (dk.data_path / f"{dk.model_filename}_model.joblib").open("rb") as fp:
model = cloudpickle.load(fp)
elif "stable_baselines" in self.model_type or "sb3_contrib" == self.model_type:
mod = importlib.import_module(
self.model_type, self.freqai_info["rl_config"]["model_type"]
)
MODELCLASS = getattr(mod, self.freqai_info["rl_config"]["model_type"])
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
elif self.model_type == "pytorch":
import torch
zip = torch.load(dk.data_path / f"{dk.model_filename}_model.zip")
model = zip["pytrainer"]
model = model.load_from_checkpoint(zip)
if not model:
raise OperationalException(
f"Unable to load model, ensure model exists at {dk.data_path} "
)
# load it into ram if it was loaded from disk
if coin not in self.model_dictionary:
self.model_dictionary[coin] = model
return model
def update_historic_data(self, strategy: IStrategy, dk: FreqaiDataKitchen) -> None:
"""
Append new candles to our stores historic data (in memory) so that
we do not need to load candle history from disk and we dont need to
pinging exchange multiple times for the same candle.
:param dataframe: DataFrame = strategy provided dataframe
"""
feat_params = self.freqai_info["feature_parameters"]
with self.history_lock:
history_data = self.historic_data
for pair in dk.all_pairs:
for tf in feat_params.get("include_timeframes"):
hist_df = history_data[pair][tf]
# check if newest candle is already appended
df_dp = strategy.dp.get_pair_dataframe(pair, tf)
if len(df_dp.index) == 0:
continue
if str(hist_df.iloc[-1]["date"]) == str(df_dp.iloc[-1:]["date"].iloc[-1]):
continue
try:
index = df_dp.loc[df_dp["date"] == hist_df.iloc[-1]["date"]].index[0] + 1
except IndexError:
if hist_df.iloc[-1]["date"] < df_dp["date"].iloc[0]:
raise OperationalException(
"In memory historical data is older than "
f"oldest DataProvider candle for {pair} on "
f"timeframe {tf}"
)
else:
index = -1
logger.warning(
f"No common dates in historical data and dataprovider for {pair}. "
f"Appending latest dataprovider candle to historical data "
"but please be aware that there is likely a gap in the historical "
"data. \n"
f"Historical data ends at {hist_df.iloc[-1]['date']} "
f"while dataprovider starts at {df_dp['date'].iloc[0]} and"
f"ends at {df_dp['date'].iloc[0]}."
)
history_data[pair][tf] = pd.concat(
[
hist_df,
df_dp.iloc[index:],
],
ignore_index=True,
axis=0,
)
self.current_candle = history_data[dk.pair][self.config["timeframe"]].iloc[-1]["date"]
def load_all_pair_histories(self, timerange: TimeRange, dk: FreqaiDataKitchen) -> None:
"""
Load pair histories for all whitelist and corr_pairlist pairs.
Only called once upon startup of bot.
:param timerange: TimeRange = full timerange required to populate all indicators
for training according to user defined train_period_days
"""
history_data = self.historic_data
for pair in dk.all_pairs:
if pair not in history_data:
history_data[pair] = {}
for tf in self.freqai_info["feature_parameters"].get("include_timeframes"):
history_data[pair][tf] = load_pair_history(
datadir=self.config["datadir"],
timeframe=tf,
pair=pair,
timerange=timerange,
data_format=self.config.get("dataformat_ohlcv", "feather"),
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
)
def get_base_and_corr_dataframes(
self, timerange: TimeRange, pair: str, dk: FreqaiDataKitchen
) -> Tuple[Dict[Any, Any], Dict[Any, Any]]:
"""
Searches through our historic_data in memory and returns the dataframes relevant
to the present pair.
:param timerange: TimeRange = full timerange required to populate all indicators
for training according to user defined train_period_days
:param metadata: dict = strategy furnished pair metadata
"""
with self.history_lock:
corr_dataframes: Dict[Any, Any] = {}
base_dataframes: Dict[Any, Any] = {}
historic_data = self.historic_data
pairs = self.freqai_info["feature_parameters"].get("include_corr_pairlist", [])
for tf in self.freqai_info["feature_parameters"].get("include_timeframes"):
base_dataframes[tf] = dk.slice_dataframe(
timerange, historic_data[pair][tf]
).reset_index(drop=True)
if pairs:
for p in pairs:
if pair in p:
continue # dont repeat anything from whitelist
if p not in corr_dataframes:
corr_dataframes[p] = {}
corr_dataframes[p][tf] = dk.slice_dataframe(
timerange, historic_data[p][tf]
).reset_index(drop=True)
return corr_dataframes, base_dataframes
def get_timerange_from_live_historic_predictions(self) -> TimeRange:
"""
Returns timerange information based on historic predictions file
:return: timerange calculated from saved live data
"""
if not self.historic_predictions_path.is_file():
raise OperationalException(
"Historic predictions not found. Historic predictions data is required "
"to run backtest with the freqai-backtest-live-models option "
)
self.load_historic_predictions_from_disk()
all_pairs_end_dates = []
for pair in self.historic_predictions:
pair_historic_data = self.historic_predictions[pair]
all_pairs_end_dates.append(pair_historic_data.date_pred.max())
global_metadata = self.load_global_metadata_from_disk()
start_date = datetime.fromtimestamp(int(global_metadata["start_dry_live_date"]))
end_date = max(all_pairs_end_dates)
# add 1 day to string timerange to ensure BT module will load all dataframe data
end_date = end_date + timedelta(days=1)
backtesting_timerange = TimeRange(
"date", "date", int(start_date.timestamp()), int(end_date.timestamp())
)
return backtesting_timerange