mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-16 05:03:55 +00:00
184 lines
7.3 KiB
Python
184 lines
7.3 KiB
Python
import logging
|
|
import shutil
|
|
from copy import deepcopy
|
|
from datetime import timedelta
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List
|
|
|
|
from pandas import DataFrame
|
|
|
|
from freqtrade.exchange import timeframe_to_minutes
|
|
from freqtrade.loggers.set_log_levels import (reduce_verbosity_for_bias_tester,
|
|
restore_verbosity_for_bias_tester)
|
|
from freqtrade.optimize.backtesting import Backtesting
|
|
from freqtrade.optimize.base_analysis import BaseAnalysis, VarHolder
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class RecursiveAnalysis(BaseAnalysis):
|
|
|
|
def __init__(self, config: Dict[str, Any], strategy_obj: Dict):
|
|
|
|
self._startup_candle = config.get('startup_candle', [199, 399, 499, 999, 1999])
|
|
|
|
super().__init__(config, strategy_obj)
|
|
|
|
self.partial_varHolder_array: List[VarHolder] = []
|
|
self.partial_varHolder_lookahead_array: List[VarHolder] = []
|
|
|
|
self.dict_recursive: Dict[str, Any] = dict()
|
|
|
|
# For recursive bias check
|
|
# analyzes two data frames with processed indicators and shows differences between them.
|
|
def analyze_indicators(self):
|
|
|
|
pair_to_check = self.local_config['pairs'][0]
|
|
logger.info("Start checking for recursive bias")
|
|
|
|
# check and report signals
|
|
base_last_row = self.full_varHolder.indicators[pair_to_check].iloc[-1]
|
|
|
|
for part in self.partial_varHolder_array:
|
|
part_last_row = part.indicators[pair_to_check].iloc[-1]
|
|
|
|
compare_df = base_last_row.compare(part_last_row)
|
|
if compare_df.shape[0] > 0:
|
|
# print(compare_df)
|
|
for col_name, values in compare_df.items():
|
|
# print(col_name)
|
|
if 'other' == col_name:
|
|
continue
|
|
indicators = values.index
|
|
|
|
for indicator in indicators:
|
|
if (indicator not in self.dict_recursive):
|
|
self.dict_recursive[indicator] = {}
|
|
|
|
values_diff = compare_df.loc[indicator]
|
|
values_diff_self = values_diff.loc['self']
|
|
values_diff_other = values_diff.loc['other']
|
|
diff = (values_diff_other - values_diff_self) / values_diff_self * 100
|
|
|
|
self.dict_recursive[indicator][part.startup_candle] = f"{diff:.3f}%"
|
|
|
|
else:
|
|
logger.info("No variance on indicator(s) found due to recursive formula.")
|
|
break
|
|
|
|
# For lookahead bias check
|
|
# analyzes two data frames with processed indicators and shows differences between them.
|
|
def analyze_indicators_lookahead(self):
|
|
|
|
pair_to_check = self.local_config['pairs'][0]
|
|
logger.info("Start checking for lookahead bias on indicators only")
|
|
|
|
part = self.partial_varHolder_lookahead_array[0]
|
|
part_last_row = part.indicators[pair_to_check].iloc[-1]
|
|
date_to_check = part_last_row['date']
|
|
index_to_get = (self.full_varHolder.indicators[pair_to_check]['date'] == date_to_check)
|
|
base_row_check = self.full_varHolder.indicators[pair_to_check].loc[index_to_get].iloc[-1]
|
|
|
|
check_time = part.to_dt.strftime('%Y-%m-%dT%H:%M:%S')
|
|
|
|
logger.info(f"Check indicators at {check_time}")
|
|
# logger.info(f"vs {part_timerange} with {part.startup_candle} startup candle")
|
|
|
|
compare_df = base_row_check.compare(part_last_row)
|
|
if compare_df.shape[0] > 0:
|
|
# print(compare_df)
|
|
for col_name, values in compare_df.items():
|
|
# print(col_name)
|
|
if 'other' == col_name:
|
|
continue
|
|
indicators = values.index
|
|
|
|
for indicator in indicators:
|
|
logger.info(f"=> found lookahead in indicator {indicator}")
|
|
# logger.info("base value {:.5f}".format(values_diff_self))
|
|
# logger.info("part value {:.5f}".format(values_diff_other))
|
|
|
|
else:
|
|
logger.info("No lookahead bias on indicators found.")
|
|
|
|
def prepare_data(self, varholder: VarHolder, pairs_to_load: List[DataFrame]):
|
|
|
|
if 'freqai' in self.local_config and 'identifier' in self.local_config['freqai']:
|
|
# purge previous data if the freqai model is defined
|
|
# (to be sure nothing is carried over from older backtests)
|
|
path_to_current_identifier = (
|
|
Path(f"{self.local_config['user_data_dir']}/models/"
|
|
f"{self.local_config['freqai']['identifier']}").resolve())
|
|
# remove folder and its contents
|
|
if Path.exists(path_to_current_identifier):
|
|
shutil.rmtree(path_to_current_identifier)
|
|
|
|
prepare_data_config = deepcopy(self.local_config)
|
|
prepare_data_config['timerange'] = (str(self.dt_to_timestamp(varholder.from_dt)) + "-" +
|
|
str(self.dt_to_timestamp(varholder.to_dt)))
|
|
prepare_data_config['exchange']['pair_whitelist'] = pairs_to_load
|
|
|
|
backtesting = Backtesting(prepare_data_config, self.exchange)
|
|
self.exchange = backtesting.exchange
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
|
|
varholder.data, varholder.timerange = backtesting.load_bt_data()
|
|
backtesting.load_bt_data_detail()
|
|
varholder.timeframe = backtesting.timeframe
|
|
|
|
varholder.indicators = backtesting.strategy.advise_all_indicators(varholder.data)
|
|
|
|
def fill_partial_varholder(self, start_date, startup_candle):
|
|
logger.info(f"Calculating indicators using startup candle of {startup_candle}.")
|
|
partial_varHolder = VarHolder()
|
|
|
|
partial_varHolder.from_dt = start_date
|
|
partial_varHolder.to_dt = self.full_varHolder.to_dt
|
|
partial_varHolder.startup_candle = startup_candle
|
|
|
|
self.local_config['startup_candle_count'] = startup_candle
|
|
|
|
self.prepare_data(partial_varHolder, self.local_config['pairs'])
|
|
|
|
self.partial_varHolder_array.append(partial_varHolder)
|
|
|
|
def fill_partial_varholder_lookahead(self, end_date):
|
|
logger.info("Calculating indicators to test lookahead on indicators.")
|
|
|
|
partial_varHolder = VarHolder()
|
|
|
|
partial_varHolder.from_dt = self.full_varHolder.from_dt
|
|
partial_varHolder.to_dt = end_date
|
|
|
|
self.prepare_data(partial_varHolder, self.local_config['pairs'])
|
|
|
|
self.partial_varHolder_lookahead_array.append(partial_varHolder)
|
|
|
|
def start(self) -> None:
|
|
|
|
super().start()
|
|
|
|
reduce_verbosity_for_bias_tester()
|
|
start_date_full = self.full_varHolder.from_dt
|
|
end_date_full = self.full_varHolder.to_dt
|
|
|
|
timeframe_minutes = timeframe_to_minutes(self.full_varHolder.timeframe)
|
|
|
|
end_date_partial = start_date_full + timedelta(minutes=int(timeframe_minutes * 10))
|
|
|
|
self.fill_partial_varholder_lookahead(end_date_partial)
|
|
|
|
# restore_verbosity_for_bias_tester()
|
|
|
|
start_date_partial = end_date_full - timedelta(minutes=int(timeframe_minutes))
|
|
|
|
for startup_candle in self._startup_candle:
|
|
self.fill_partial_varholder(start_date_partial, int(startup_candle))
|
|
|
|
# Restore verbosity, so it's not too quiet for the next strategy
|
|
restore_verbosity_for_bias_tester()
|
|
|
|
self.analyze_indicators()
|
|
self.analyze_indicators_lookahead()
|