freqtrade_origin/freqtrade/strategy/hyper.py
2024-11-08 04:37:33 +08:00

217 lines
8.1 KiB
Python

"""
IHyperStrategy interface, hyperoptable Parameter class.
This module defines a base class for auto-hyperoptable strategies.
"""
import logging
from collections.abc import Iterator
from pathlib import Path
from typing import Any
from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts
from freqtrade.optimize.hyperopt_tools import HyperoptTools
from freqtrade.strategy.parameters import BaseParameter
logger = logging.getLogger(__name__)
class HyperStrategyMixin:
"""
A helper base class which allows HyperOptAuto class to reuse implementations of buy/sell
strategy logic.
"""
def __init__(self, config: Config, *args, **kwargs):
"""
Initialize hyperoptable strategy mixin.
"""
self.config = config
self.ft_buy_params: list[BaseParameter] = []
self.ft_sell_params: list[BaseParameter] = []
self.ft_protection_params: list[BaseParameter] = []
params = self.load_params_from_file()
params = params.get("params", {})
self._ft_params_from_file = params
# Init/loading of parameters is done as part of ft_bot_start().
def enumerate_parameters(
self, category: str | None = None
) -> Iterator[tuple[str, BaseParameter]]:
"""
Find all optimizable parameters and return (name, attr) iterator.
:param category:
:return:
"""
if category not in ("buy", "sell", "protection", None):
raise OperationalException(
'Category must be one of: "buy", "sell", "protection", None.'
)
if category is None:
params = self.ft_buy_params + self.ft_sell_params + self.ft_protection_params
else:
params = getattr(self, f"ft_{category}_params")
for par in params:
yield par.name, par
@classmethod
def detect_all_parameters(cls) -> dict:
"""Detect all parameters and return them as a list"""
params: dict[str, Any] = {
"buy": list(detect_parameters(cls, "buy")),
"sell": list(detect_parameters(cls, "sell")),
"protection": list(detect_parameters(cls, "protection")),
}
params.update({"count": len(params["buy"] + params["sell"] + params["protection"])})
return params
def ft_load_params_from_file(self) -> None:
"""
Load Parameters from parameter file
Should/must run before config values are loaded in strategy_resolver.
"""
if self._ft_params_from_file:
# Set parameters from Hyperopt results file
params = self._ft_params_from_file
self.minimal_roi = params.get("roi", getattr(self, "minimal_roi", {}))
self.stoploss = params.get("stoploss", {}).get(
"stoploss", getattr(self, "stoploss", -0.1)
)
self.max_open_trades = params.get("max_open_trades", {}).get(
"max_open_trades", getattr(self, "max_open_trades", -1)
)
trailing = params.get("trailing", {})
self.trailing_stop = trailing.get(
"trailing_stop", getattr(self, "trailing_stop", False)
)
self.trailing_stop_positive = trailing.get(
"trailing_stop_positive", getattr(self, "trailing_stop_positive", None)
)
self.trailing_stop_positive_offset = trailing.get(
"trailing_stop_positive_offset", getattr(self, "trailing_stop_positive_offset", 0)
)
self.trailing_only_offset_is_reached = trailing.get(
"trailing_only_offset_is_reached",
getattr(self, "trailing_only_offset_is_reached", 0.0),
)
def ft_load_hyper_params(self, hyperopt: bool = False) -> None:
"""
Load Hyperoptable parameters
Prevalence:
* Parameters from parameter file
* Parameters defined in parameters objects (buy_params, sell_params, ...)
* Parameter defaults
"""
buy_params = deep_merge_dicts(
self._ft_params_from_file.get("buy", {}), getattr(self, "buy_params", {})
)
sell_params = deep_merge_dicts(
self._ft_params_from_file.get("sell", {}), getattr(self, "sell_params", {})
)
protection_params = deep_merge_dicts(
self._ft_params_from_file.get("protection", {}), getattr(self, "protection_params", {})
)
self._ft_load_params(buy_params, "buy", hyperopt)
self._ft_load_params(sell_params, "sell", hyperopt)
self._ft_load_params(protection_params, "protection", hyperopt)
def load_params_from_file(self) -> dict:
filename_str = getattr(self, "__file__", "")
if not filename_str:
return {}
filename = Path(filename_str).with_suffix(".json")
if filename.is_file():
logger.info(f"Loading parameters from file {filename}")
try:
params = HyperoptTools.load_params(filename)
if params.get("strategy_name") != self.__class__.__name__:
raise OperationalException("Invalid parameter file provided.")
return params
except ValueError:
logger.warning("Invalid parameter file format.")
return {}
logger.info("Found no parameter file.")
return {}
def _ft_load_params(self, params: dict, space: str, hyperopt: bool = False) -> None:
"""
Set optimizable parameter values.
:param params: Dictionary with new parameter values.
"""
if not params:
logger.info(f"No params for {space} found, using default values.")
param_container: list[BaseParameter] = getattr(self, f"ft_{space}_params")
for attr_name, attr in detect_parameters(self, space):
attr.name = attr_name
attr.in_space = hyperopt and HyperoptTools.has_space(self.config, space)
if not attr.category:
attr.category = space
param_container.append(attr)
if params and attr_name in params:
if attr.load:
attr.value = params[attr_name]
logger.info(f"Strategy Parameter: {attr_name} = {attr.value}")
else:
logger.warning(
f'Parameter "{attr_name}" exists, but is disabled. '
f'Default value "{attr.value}" used.'
)
else:
logger.info(f"Strategy Parameter(default): {attr_name} = {attr.value}")
def get_no_optimize_params(self) -> dict[str, dict]:
"""
Returns list of Parameters that are not part of the current optimize job
"""
params: dict[str, dict] = {
"buy": {},
"sell": {},
"protection": {},
}
for name, p in self.enumerate_parameters():
if p.category and (not p.optimize or not p.in_space):
params[p.category][name] = p.value
return params
def detect_parameters(
obj: HyperStrategyMixin | type[HyperStrategyMixin], category: str
) -> Iterator[tuple[str, BaseParameter]]:
"""
Detect all parameters for 'category' for "obj"
:param obj: Strategy object or class
:param category: category - usually `'buy', 'sell', 'protection',...
"""
for attr_name in dir(obj):
if not attr_name.startswith("__"): # Ignore internals, not strictly necessary.
attr = getattr(obj, attr_name)
if issubclass(attr.__class__, BaseParameter):
if (
attr_name.startswith(category + "_")
and attr.category is not None
and attr.category != category
):
raise OperationalException(
f"Inconclusive parameter name {attr_name}, category: {attr.category}."
)
if category == attr.category or (
attr_name.startswith(category + "_") and attr.category is None
):
yield attr_name, attr