freqtrade_origin/freqtrade/strategy/parameters.py
2024-11-08 04:37:33 +08:00

370 lines
13 KiB
Python

"""
IHyperStrategy interface, hyperoptable Parameter class.
This module defines a base class for auto-hyperoptable strategies.
"""
import logging
from abc import ABC, abstractmethod
from collections.abc import Sequence
from contextlib import suppress
from typing import Any, Union
from freqtrade.enums import HyperoptState
from freqtrade.optimize.hyperopt_tools import HyperoptStateContainer
with suppress(ImportError):
from skopt.space import Categorical, Integer, Real
from freqtrade.optimize.space import SKDecimal
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
class BaseParameter(ABC):
"""
Defines a parameter that can be optimized by hyperopt.
"""
category: str | None
default: Any
value: Any
in_space: bool = False
name: str
def __init__(
self,
*,
default: Any,
space: str | None = None,
optimize: bool = True,
load: bool = True,
**kwargs,
):
"""
Initialize hyperopt-optimizable parameter.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter field
name is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.(Integer|Real|Categorical).
"""
if "name" in kwargs:
raise OperationalException(
"Name is determined by parameter field name and can not be specified manually."
)
self.category = space
self._space_params = kwargs
self.value = default
self.optimize = optimize
self.load = load
def __repr__(self):
return f"{self.__class__.__name__}({self.value})"
@abstractmethod
def get_space(self, name: str) -> Union["Integer", "Real", "SKDecimal", "Categorical"]:
"""
Get-space - will be used by Hyperopt to get the hyperopt Space
"""
def can_optimize(self):
return (
self.in_space
and self.optimize
and HyperoptStateContainer.state != HyperoptState.OPTIMIZE
)
class NumericParameter(BaseParameter):
"""Internal parameter used for Numeric purposes"""
float_or_int = int | float
default: float_or_int
value: float_or_int
def __init__(
self,
low: float_or_int | Sequence[float_or_int],
high: float_or_int | None = None,
*,
default: float_or_int,
space: str | None = None,
optimize: bool = True,
load: bool = True,
**kwargs,
):
"""
Initialize hyperopt-optimizable numeric parameter.
Cannot be instantiated, but provides the validation for other numeric parameters
:param low: Lower end (inclusive) of optimization space or [low, high].
:param high: Upper end (inclusive) of optimization space.
Must be none of entire range is passed first parameter.
:param default: A default value.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter fieldname is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.*.
"""
if high is not None and isinstance(low, Sequence):
raise OperationalException(f"{self.__class__.__name__} space invalid.")
if high is None or isinstance(low, Sequence):
if not isinstance(low, Sequence) or len(low) != 2:
raise OperationalException(f"{self.__class__.__name__} space must be [low, high]")
self.low, self.high = low
else:
self.low = low
self.high = high
super().__init__(default=default, space=space, optimize=optimize, load=load, **kwargs)
class IntParameter(NumericParameter):
default: int
value: int
low: int
high: int
def __init__(
self,
low: int | Sequence[int],
high: int | None = None,
*,
default: int,
space: str | None = None,
optimize: bool = True,
load: bool = True,
**kwargs,
):
"""
Initialize hyperopt-optimizable integer parameter.
:param low: Lower end (inclusive) of optimization space or [low, high].
:param high: Upper end (inclusive) of optimization space.
Must be none of entire range is passed first parameter.
:param default: A default value.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter fieldname is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.Integer.
"""
super().__init__(
low=low, high=high, default=default, space=space, optimize=optimize, load=load, **kwargs
)
def get_space(self, name: str) -> "Integer":
"""
Create skopt optimization space.
:param name: A name of parameter field.
"""
return Integer(low=self.low, high=self.high, name=name, **self._space_params)
@property
def range(self):
"""
Get each value in this space as list.
Returns a List from low to high (inclusive) in Hyperopt mode.
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
calculating 100ds of indicators.
"""
if self.can_optimize():
# Scikit-optimize ranges are "inclusive", while python's "range" is exclusive
return range(self.low, self.high + 1)
else:
return range(self.value, self.value + 1)
class RealParameter(NumericParameter):
default: float
value: float
def __init__(
self,
low: float | Sequence[float],
high: float | None = None,
*,
default: float,
space: str | None = None,
optimize: bool = True,
load: bool = True,
**kwargs,
):
"""
Initialize hyperopt-optimizable floating point parameter with unlimited precision.
:param low: Lower end (inclusive) of optimization space or [low, high].
:param high: Upper end (inclusive) of optimization space.
Must be none if entire range is passed first parameter.
:param default: A default value.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter fieldname is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.Real.
"""
super().__init__(
low=low, high=high, default=default, space=space, optimize=optimize, load=load, **kwargs
)
def get_space(self, name: str) -> "Real":
"""
Create skopt optimization space.
:param name: A name of parameter field.
"""
return Real(low=self.low, high=self.high, name=name, **self._space_params)
class DecimalParameter(NumericParameter):
default: float
value: float
def __init__(
self,
low: float | Sequence[float],
high: float | None = None,
*,
default: float,
decimals: int = 3,
space: str | None = None,
optimize: bool = True,
load: bool = True,
**kwargs,
):
"""
Initialize hyperopt-optimizable decimal parameter with a limited precision.
:param low: Lower end (inclusive) of optimization space or [low, high].
:param high: Upper end (inclusive) of optimization space.
Must be none if entire range is passed first parameter.
:param default: A default value.
:param decimals: A number of decimals after floating point to be included in testing.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter fieldname is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.Integer.
"""
self._decimals = decimals
default = round(default, self._decimals)
super().__init__(
low=low, high=high, default=default, space=space, optimize=optimize, load=load, **kwargs
)
def get_space(self, name: str) -> "SKDecimal":
"""
Create skopt optimization space.
:param name: A name of parameter field.
"""
return SKDecimal(
low=self.low, high=self.high, decimals=self._decimals, name=name, **self._space_params
)
@property
def range(self):
"""
Get each value in this space as list.
Returns a List from low to high (inclusive) in Hyperopt mode.
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
calculating 100ds of indicators.
"""
if self.can_optimize():
low = int(self.low * pow(10, self._decimals))
high = int(self.high * pow(10, self._decimals)) + 1
return [round(n * pow(0.1, self._decimals), self._decimals) for n in range(low, high)]
else:
return [self.value]
class CategoricalParameter(BaseParameter):
default: Any
value: Any
opt_range: Sequence[Any]
def __init__(
self,
categories: Sequence[Any],
*,
default: Any | None = None,
space: str | None = None,
optimize: bool = True,
load: bool = True,
**kwargs,
):
"""
Initialize hyperopt-optimizable parameter.
:param categories: Optimization space, [a, b, ...].
:param default: A default value. If not specified, first item from specified space will be
used.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter field
name is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.Categorical.
"""
if len(categories) < 2:
raise OperationalException(
"CategoricalParameter space must be [a, b, ...] (at least two parameters)"
)
self.opt_range = categories
super().__init__(default=default, space=space, optimize=optimize, load=load, **kwargs)
def get_space(self, name: str) -> "Categorical":
"""
Create skopt optimization space.
:param name: A name of parameter field.
"""
return Categorical(self.opt_range, name=name, **self._space_params)
@property
def range(self):
"""
Get each value in this space as list.
Returns a List of categories in Hyperopt mode.
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
calculating 100ds of indicators.
"""
if self.can_optimize():
return self.opt_range
else:
return [self.value]
class BooleanParameter(CategoricalParameter):
def __init__(
self,
*,
default: Any | None = None,
space: str | None = None,
optimize: bool = True,
load: bool = True,
**kwargs,
):
"""
Initialize hyperopt-optimizable Boolean Parameter.
It's a shortcut to `CategoricalParameter([True, False])`.
:param default: A default value. If not specified, first item from specified space will be
used.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter field
name is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.Categorical.
"""
categories = [True, False]
super().__init__(
categories=categories,
default=default,
space=space,
optimize=optimize,
load=load,
**kwargs,
)