freqtrade_origin/freqtrade/optimize/analysis/lookahead.py

284 lines
12 KiB
Python
Executable File

import logging
import shutil
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
from typing import Any
from pandas import DataFrame
from freqtrade.data.history import get_timerange
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.loggers.set_log_levels import (
reduce_verbosity_for_bias_tester,
restore_verbosity_for_bias_tester,
)
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.optimize.base_analysis import BaseAnalysis, VarHolder
logger = logging.getLogger(__name__)
class Analysis:
def __init__(self) -> None:
self.total_signals = 0
self.false_entry_signals = 0
self.false_exit_signals = 0
self.false_indicators: list[str] = []
self.has_bias = False
class LookaheadAnalysis(BaseAnalysis):
def __init__(self, config: dict[str, Any], strategy_obj: dict):
super().__init__(config, strategy_obj)
self.entry_varHolders: list[VarHolder] = []
self.exit_varHolders: list[VarHolder] = []
self.current_analysis = Analysis()
self.minimum_trade_amount = config["minimum_trade_amount"]
self.targeted_trade_amount = config["targeted_trade_amount"]
@staticmethod
def get_result(backtesting: Backtesting, processed: DataFrame):
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed), start_date=min_date, end_date=max_date
)
return result
@staticmethod
def report_signal(result: dict, column_name: str, checked_timestamp: datetime):
df = result["results"]
row_count = df[column_name].shape[0]
if row_count == 0:
return False
else:
df_cut = df[(df[column_name] == checked_timestamp)]
if df_cut[column_name].shape[0] == 0:
return False
else:
return True
return False
# analyzes two data frames with processed indicators and shows differences between them.
def analyze_indicators(self, full_vars: VarHolder, cut_vars: VarHolder, current_pair: str):
# extract dataframes
cut_df: DataFrame = cut_vars.indicators[current_pair]
full_df: DataFrame = full_vars.indicators[current_pair]
# cut longer dataframe to length of the shorter
full_df_cut = full_df[(full_df.date == cut_vars.compared_dt)].reset_index(drop=True)
cut_df_cut = cut_df[(cut_df.date == cut_vars.compared_dt)].reset_index(drop=True)
# check if dataframes are not empty
if full_df_cut.shape[0] != 0 and cut_df_cut.shape[0] != 0:
# compare dataframes
compare_df = full_df_cut.compare(cut_df_cut)
if compare_df.shape[0] > 0:
for col_name, values in compare_df.items():
col_idx = compare_df.columns.get_loc(col_name)
compare_df_row = compare_df.iloc[0]
# compare_df now comprises tuples with [1] having either 'self' or 'other'
if "other" in col_name[1]:
continue
self_value = compare_df_row.iloc[col_idx]
other_value = compare_df_row.iloc[col_idx + 1]
# output differences
if self_value != other_value:
if not self.current_analysis.false_indicators.__contains__(col_name[0]):
self.current_analysis.false_indicators.append(col_name[0])
logger.info(
f"=> found look ahead bias in indicator "
f"{col_name[0]}. "
f"{str(self_value)} != {str(other_value)}"
)
def prepare_data(self, varholder: VarHolder, pairs_to_load: list[DataFrame]):
if "freqai" in self.local_config and "identifier" in self.local_config["freqai"]:
# purge previous data if the freqai model is defined
# (to be sure nothing is carried over from older backtests)
path_to_current_identifier = Path(
f"{self.local_config['user_data_dir']}/models/"
f"{self.local_config['freqai']['identifier']}"
).resolve()
# remove folder and its contents
if Path.exists(path_to_current_identifier):
shutil.rmtree(path_to_current_identifier)
prepare_data_config = deepcopy(self.local_config)
prepare_data_config["timerange"] = (
str(self.dt_to_timestamp(varholder.from_dt))
+ "-"
+ str(self.dt_to_timestamp(varholder.to_dt))
)
prepare_data_config["exchange"]["pair_whitelist"] = pairs_to_load
if self._fee is not None:
# Don't re-calculate fee per pair, as fee might differ per pair.
prepare_data_config["fee"] = self._fee
backtesting = Backtesting(prepare_data_config, self.exchange)
self.exchange = backtesting.exchange
self._fee = backtesting.fee
backtesting._set_strategy(backtesting.strategylist[0])
varholder.data, varholder.timerange = backtesting.load_bt_data()
backtesting.load_bt_data_detail()
varholder.timeframe = backtesting.timeframe
varholder.indicators = backtesting.strategy.advise_all_indicators(varholder.data)
varholder.result = self.get_result(backtesting, varholder.indicators)
def fill_entry_and_exit_varHolders(self, result_row):
# entry_varHolder
entry_varHolder = VarHolder()
self.entry_varHolders.append(entry_varHolder)
entry_varHolder.from_dt = self.full_varHolder.from_dt
entry_varHolder.compared_dt = result_row["open_date"]
# to_dt needs +1 candle since it won't buy on the last candle
entry_varHolder.to_dt = result_row["open_date"] + timedelta(
minutes=timeframe_to_minutes(self.full_varHolder.timeframe)
)
self.prepare_data(entry_varHolder, [result_row["pair"]])
# exit_varHolder
exit_varHolder = VarHolder()
self.exit_varHolders.append(exit_varHolder)
# to_dt needs +1 candle since it will always exit/force-exit trades on the last candle
exit_varHolder.from_dt = self.full_varHolder.from_dt
exit_varHolder.to_dt = result_row["close_date"] + timedelta(
minutes=timeframe_to_minutes(self.full_varHolder.timeframe)
)
exit_varHolder.compared_dt = result_row["close_date"]
self.prepare_data(exit_varHolder, [result_row["pair"]])
# now we analyze a full trade of full_varholder and look for analyze its bias
def analyze_row(self, idx: int, result_row):
# if force-sold, ignore this signal since here it will unconditionally exit.
if result_row.close_date == self.dt_to_timestamp(self.full_varHolder.to_dt):
return
# keep track of how many signals are processed at total
self.current_analysis.total_signals += 1
# fill entry_varHolder and exit_varHolder
self.fill_entry_and_exit_varHolders(result_row)
# this will trigger a logger-message
buy_or_sell_biased: bool = False
# register if buy signal is broken
if not self.report_signal(
self.entry_varHolders[idx].result, "open_date", self.entry_varHolders[idx].compared_dt
):
self.current_analysis.false_entry_signals += 1
buy_or_sell_biased = True
# register if buy or sell signal is broken
if not self.report_signal(
self.exit_varHolders[idx].result, "close_date", self.exit_varHolders[idx].compared_dt
):
self.current_analysis.false_exit_signals += 1
buy_or_sell_biased = True
if buy_or_sell_biased:
logger.info(
f"found lookahead-bias in trade "
f"pair: {result_row['pair']}, "
f"timerange:{result_row['open_date']} - {result_row['close_date']}, "
f"idx: {idx}"
)
# check if the indicators themselves contain biased data
self.analyze_indicators(self.full_varHolder, self.entry_varHolders[idx], result_row["pair"])
self.analyze_indicators(self.full_varHolder, self.exit_varHolders[idx], result_row["pair"])
def start(self) -> None:
super().start()
reduce_verbosity_for_bias_tester()
# check if requirements have been met of full_varholder
found_signals: int = self.full_varHolder.result["results"].shape[0] + 1
if found_signals >= self.targeted_trade_amount:
logger.info(
f"Found {found_signals} trades, "
f"calculating {self.targeted_trade_amount} trades."
)
elif self.targeted_trade_amount >= found_signals >= self.minimum_trade_amount:
logger.info(f"Only found {found_signals} trades. Calculating all available trades.")
else:
logger.info(
f"found {found_signals} trades "
f"which is less than minimum_trade_amount {self.minimum_trade_amount}. "
f"Cancelling this backtest lookahead bias test."
)
return
# now we loop through all signals
# starting from the same datetime to avoid miss-reports of bias
for idx, result_row in self.full_varHolder.result["results"].iterrows():
if self.current_analysis.total_signals == self.targeted_trade_amount:
logger.info(f"Found targeted trade amount = {self.targeted_trade_amount} signals.")
break
if found_signals < self.minimum_trade_amount:
logger.info(
f"only found {found_signals} "
f"which is smaller than "
f"minimum trade amount = {self.minimum_trade_amount}. "
f"Exiting this lookahead-analysis"
)
return None
if "force_exit" in result_row["exit_reason"]:
logger.info(
"found force-exit in pair: {result_row['pair']}, "
f"timerange:{result_row['open_date']}-{result_row['close_date']}, "
f"idx: {idx}, skipping this one to avoid a false-positive."
)
# just to keep the IDs of both full, entry and exit varholders the same
# to achieve a better debugging experience
self.entry_varHolders.append(VarHolder())
self.exit_varHolders.append(VarHolder())
continue
self.analyze_row(idx, result_row)
if len(self.entry_varHolders) < self.minimum_trade_amount:
logger.info(
f"only found {found_signals} after skipping forced exits "
f"which is smaller than "
f"minimum trade amount = {self.minimum_trade_amount}. "
f"Exiting this lookahead-analysis"
)
# Restore verbosity, so it's not too quiet for the next strategy
restore_verbosity_for_bias_tester()
# check and report signals
if self.current_analysis.total_signals < self.local_config["minimum_trade_amount"]:
logger.info(
f" -> {self.local_config['strategy']} : too few trades. "
f"We only found {self.current_analysis.total_signals} trades. "
f"Hint: Extend the timerange "
f"to get at least {self.local_config['minimum_trade_amount']} "
f"or lower the value of minimum_trade_amount."
)
self.failed_bias_check = True
elif (
self.current_analysis.false_entry_signals > 0
or self.current_analysis.false_exit_signals > 0
or len(self.current_analysis.false_indicators) > 0
):
logger.info(f" => {self.local_config['strategy']} : bias detected!")
self.current_analysis.has_bias = True
self.failed_bias_check = False
else:
logger.info(self.local_config["strategy"] + ": no bias detected")
self.failed_bias_check = False