mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
141 lines
5.0 KiB
Django/Jinja
141 lines
5.0 KiB
Django/Jinja
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
# --- Do not remove these libs ---
|
|
import numpy as np # noqa
|
|
import pandas as pd # noqa
|
|
from pandas import DataFrame
|
|
|
|
from freqtrade.strategy.interface import IStrategy
|
|
|
|
# --------------------------------
|
|
# Add your lib to import here
|
|
import talib.abstract as ta
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
|
class {{ strategy }}(IStrategy):
|
|
"""
|
|
This is a strategy template to get you started.
|
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
|
|
|
|
You can:
|
|
:return: a Dataframe with all mandatory indicators for the strategies
|
|
- Rename the class name (Do not forget to update class_name)
|
|
- Add any methods you want to build your strategy
|
|
- Add any lib you need to build your strategy
|
|
|
|
You must keep:
|
|
- the lib in the section "Do not remove these libs"
|
|
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
|
|
populate_sell_trend, hyperopt_space, buy_strategy_generator
|
|
"""
|
|
# Strategy interface version - allow new iterations of the strategy interface.
|
|
# Check the documentation or the Sample strategy to get the latest version.
|
|
INTERFACE_VERSION = 2
|
|
|
|
# Minimal ROI designed for the strategy.
|
|
# This attribute will be overridden if the config file contains "minimal_roi".
|
|
minimal_roi = {
|
|
"60": 0.01,
|
|
"30": 0.02,
|
|
"0": 0.04
|
|
}
|
|
|
|
# Optimal stoploss designed for the strategy.
|
|
# This attribute will be overridden if the config file contains "stoploss".
|
|
stoploss = -0.10
|
|
|
|
# Trailing stoploss
|
|
trailing_stop = False
|
|
# trailing_only_offset_is_reached = False
|
|
# trailing_stop_positive = 0.01
|
|
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
|
|
|
|
# Optimal timeframe for the strategy.
|
|
timeframe = '5m'
|
|
|
|
# Run "populate_indicators()" only for new candle.
|
|
process_only_new_candles = False
|
|
|
|
# These values can be overridden in the "ask_strategy" section in the config.
|
|
use_sell_signal = True
|
|
sell_profit_only = False
|
|
ignore_roi_if_buy_signal = False
|
|
|
|
# Number of candles the strategy requires before producing valid signals
|
|
startup_candle_count: int = 30
|
|
|
|
# Optional order type mapping.
|
|
order_types = {
|
|
'buy': 'limit',
|
|
'sell': 'limit',
|
|
'stoploss': 'market',
|
|
'stoploss_on_exchange': False
|
|
}
|
|
|
|
# Optional order time in force.
|
|
order_time_in_force = {
|
|
'buy': 'gtc',
|
|
'sell': 'gtc'
|
|
}
|
|
{{ plot_config | indent(4) }}
|
|
def informative_pairs(self):
|
|
"""
|
|
Define additional, informative pair/interval combinations to be cached from the exchange.
|
|
These pair/interval combinations are non-tradeable, unless they are part
|
|
of the whitelist as well.
|
|
For more information, please consult the documentation
|
|
:return: List of tuples in the format (pair, interval)
|
|
Sample: return [("ETH/USDT", "5m"),
|
|
("BTC/USDT", "15m"),
|
|
]
|
|
"""
|
|
return []
|
|
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
|
|
Performance Note: For the best performance be frugal on the number of indicators
|
|
you are using. Let uncomment only the indicator you are using in your strategies
|
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
|
:param dataframe: Dataframe with data from the exchange
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: a Dataframe with all mandatory indicators for the strategies
|
|
"""
|
|
{{ indicators | indent(8) }}
|
|
|
|
return dataframe
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame populated with indicators
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
{{ buy_trend | indent(16) }}
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame populated with indicators
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
{{ sell_trend | indent(16) }}
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
'sell'] = 1
|
|
return dataframe
|
|
{{ additional_methods | indent(4) }}
|