mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
192 lines
7.6 KiB
Python
192 lines
7.6 KiB
Python
# pragma pylint: disable=missing-docstring,W0212
|
|
|
|
import logging
|
|
import math
|
|
import pandas as pd
|
|
from unittest.mock import MagicMock
|
|
from freqtrade import exchange, optimize
|
|
from freqtrade.exchange import Bittrex
|
|
from freqtrade.optimize import preprocess
|
|
from freqtrade.optimize.backtesting import backtest, generate_text_table, get_timeframe
|
|
import freqtrade.optimize.backtesting as backtesting
|
|
|
|
|
|
def trim_dictlist(dl, num):
|
|
new = {}
|
|
for pair, pair_data in dl.items():
|
|
new[pair] = pair_data[num:]
|
|
return new
|
|
|
|
|
|
def test_generate_text_table():
|
|
results = pd.DataFrame(
|
|
{
|
|
'currency': ['BTC_ETH', 'BTC_ETH'],
|
|
'profit_percent': [0.1, 0.2],
|
|
'profit_BTC': [0.2, 0.4],
|
|
'duration': [10, 30],
|
|
'profit': [2, 0],
|
|
'loss': [0, 0]
|
|
}
|
|
)
|
|
print(generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5))
|
|
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5) == (
|
|
'pair buy count avg profit % total profit BTC avg duration profit loss\n' # noqa
|
|
'------- ----------- -------------- ------------------ -------------- -------- ------\n' # noqa
|
|
'BTC_ETH 2 15.00 0.60000000 100.0 2 0\n' # noqa
|
|
'TOTAL 2 15.00 0.60000000 100.0 2 0') # noqa
|
|
|
|
|
|
def test_get_timeframe():
|
|
data = preprocess(optimize.load_data(
|
|
None, ticker_interval=1, pairs=['BTC_UNITEST']))
|
|
min_date, max_date = get_timeframe(data)
|
|
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
|
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
|
|
|
|
|
def test_backtest(default_conf, mocker):
|
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
|
|
|
data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
|
|
data = trim_dictlist(data, -200)
|
|
results = backtest({'stake_amount': default_conf['stake_amount'],
|
|
'processed': optimize.preprocess(data),
|
|
'max_open_trades': 10,
|
|
'realistic': True})
|
|
assert not results.empty
|
|
|
|
|
|
def test_backtest_1min_ticker_interval(default_conf, mocker):
|
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
|
|
|
# Run a backtesting for an exiting 5min ticker_interval
|
|
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
|
|
data = trim_dictlist(data, -200)
|
|
results = backtest({'stake_amount': default_conf['stake_amount'],
|
|
'processed': optimize.preprocess(data),
|
|
'max_open_trades': 1,
|
|
'realistic': True})
|
|
assert not results.empty
|
|
|
|
|
|
def load_data_test(what):
|
|
timerange = ((None, 'line'), None, -100)
|
|
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'], timerange=timerange)
|
|
pair = data['BTC_UNITEST']
|
|
datalen = len(pair)
|
|
# Depending on the what parameter we now adjust the
|
|
# loaded data looks:
|
|
# pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123,
|
|
# 'C': 0.123, 'V': 123.123,
|
|
# 'T': '2017-11-04T23:02:00', 'BV': 0.123}]
|
|
base = 0.001
|
|
if what == 'raise':
|
|
return {'BTC_UNITEST':
|
|
[{'T': pair[x]['T'], # Keep old dates
|
|
'V': pair[x]['V'], # Keep old volume
|
|
'BV': pair[x]['BV'], # keep too
|
|
'O': x * base, # But replace O,H,L,C
|
|
'H': x * base + 0.0001,
|
|
'L': x * base - 0.0001,
|
|
'C': x * base} for x in range(0, datalen)]}
|
|
if what == 'lower':
|
|
return {'BTC_UNITEST':
|
|
[{'T': pair[x]['T'], # Keep old dates
|
|
'V': pair[x]['V'], # Keep old volume
|
|
'BV': pair[x]['BV'], # keep too
|
|
'O': 1 - x * base, # But replace O,H,L,C
|
|
'H': 1 - x * base + 0.0001,
|
|
'L': 1 - x * base - 0.0001,
|
|
'C': 1 - x * base} for x in range(0, datalen)]}
|
|
if what == 'sine':
|
|
hz = 0.1 # frequency
|
|
return {'BTC_UNITEST':
|
|
[{'T': pair[x]['T'], # Keep old dates
|
|
'V': pair[x]['V'], # Keep old volume
|
|
'BV': pair[x]['BV'], # keep too
|
|
# But replace O,H,L,C
|
|
'O': math.sin(x * hz) / 1000 + base,
|
|
'H': math.sin(x * hz) / 1000 + base + 0.0001,
|
|
'L': math.sin(x * hz) / 1000 + base - 0.0001,
|
|
'C': math.sin(x * hz) / 1000 + base} for x in range(0, datalen)]}
|
|
return data
|
|
|
|
|
|
def simple_backtest(config, contour, num_results):
|
|
data = load_data_test(contour)
|
|
processed = optimize.preprocess(data)
|
|
assert isinstance(processed, dict)
|
|
results = backtest({'stake_amount': config['stake_amount'],
|
|
'processed': processed,
|
|
'max_open_trades': 1,
|
|
'realistic': True})
|
|
# results :: <class 'pandas.core.frame.DataFrame'>
|
|
assert len(results) == num_results
|
|
|
|
|
|
# Test backtest on offline data
|
|
# loaded by freqdata/optimize/__init__.py::load_data()
|
|
|
|
|
|
def test_backtest2(default_conf, mocker):
|
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
|
data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
|
|
data = trim_dictlist(data, -200)
|
|
results = backtest({'stake_amount': default_conf['stake_amount'],
|
|
'processed': optimize.preprocess(data),
|
|
'max_open_trades': 10,
|
|
'realistic': True})
|
|
assert not results.empty
|
|
|
|
|
|
def test_processed(default_conf, mocker):
|
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
|
dict_of_tickerrows = load_data_test('raise')
|
|
dataframes = optimize.preprocess(dict_of_tickerrows)
|
|
dataframe = dataframes['BTC_UNITEST']
|
|
cols = dataframe.columns
|
|
# assert the dataframe got some of the indicator columns
|
|
for col in ['close', 'high', 'low', 'open', 'date',
|
|
'ema50', 'ao', 'macd', 'plus_dm']:
|
|
assert col in cols
|
|
|
|
|
|
def test_backtest_pricecontours(default_conf, mocker):
|
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
|
tests = [['raise', 17], ['lower', 0], ['sine', 17]]
|
|
for [contour, numres] in tests:
|
|
simple_backtest(default_conf, contour, numres)
|
|
|
|
|
|
def mocked_load_data(datadir, pairs=[], ticker_interval=0, refresh_pairs=False, timerange=None):
|
|
tickerdata = optimize.load_tickerdata_file(datadir, 'BTC_UNITEST', 1, timerange=timerange)
|
|
pairdata = {'BTC_UNITEST': tickerdata}
|
|
return pairdata
|
|
|
|
|
|
def test_backtest_start(default_conf, mocker, caplog):
|
|
default_conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
|
|
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
|
mocker.patch('freqtrade.misc.load_config', new=lambda s: default_conf)
|
|
mocker.patch.multiple('freqtrade.optimize',
|
|
load_data=mocked_load_data)
|
|
args = MagicMock()
|
|
args.ticker_interval = 1
|
|
args.level = 10
|
|
args.live = False
|
|
args.datadir = None
|
|
args.export = None
|
|
args.timerange = '-100' # needed due to MagicMock malleability
|
|
backtesting.start(args)
|
|
# check the logs, that will contain the backtest result
|
|
exists = ['Using max_open_trades: 1 ...',
|
|
'Using stake_amount: 0.001 ...',
|
|
'Measuring data from 2017-11-14T21:17:00+00:00 up to 2017-11-14T22:59:00+00:00 ...']
|
|
for line in exists:
|
|
assert ('freqtrade.optimize.backtesting',
|
|
logging.INFO,
|
|
line) in caplog.record_tuples
|