mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
233 lines
10 KiB
Python
233 lines
10 KiB
Python
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||
import logging
|
||
from unittest.mock import MagicMock
|
||
from typing import NamedTuple
|
||
|
||
from pandas import DataFrame
|
||
import pytest
|
||
from arrow import get as getdate
|
||
|
||
|
||
from freqtrade.optimize.backtesting import Backtesting
|
||
from freqtrade.strategy.interface import SellType
|
||
from freqtrade.tests.conftest import patch_exchange, log_has
|
||
|
||
|
||
class BTContainer(NamedTuple):
|
||
"""
|
||
NamedTuple Defining BacktestResults inputs.
|
||
"""
|
||
data: DataFrame
|
||
stop_loss: float
|
||
roi: float
|
||
trades: int
|
||
profit_perc: float
|
||
sell_r: SellType
|
||
|
||
|
||
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
|
||
data_profit = DataFrame([
|
||
[getdate('2018-07-08 18:00:00').datetime, 0.0009910,
|
||
0.001011, 0.00098618, 0.001000, 12345, 1, 0],
|
||
[getdate('2018-07-08 19:00:00').datetime, 0.001000,
|
||
0.001010, 0.0009900, 0.0009900, 12345, 0, 0],
|
||
[getdate('2018-07-08 20:00:00').datetime, 0.0009900,
|
||
0.001011, 0.00091618, 0.0009900, 12345, 0, 0],
|
||
[getdate('2018-07-08 21:00:00').datetime, 0.001000,
|
||
0.001011, 0.00098618, 0.001100, 12345, 0, 1],
|
||
[getdate('2018-07-08 22:00:00').datetime, 0.001000,
|
||
0.001011, 0.00098618, 0.0009900, 12345, 0, 0]
|
||
], columns=columns)
|
||
|
||
tc_profit1 = BTContainer(data=data_profit, stop_loss=-0.01, roi=1, trades=1,
|
||
profit_perc=0.10557, sell_r=SellType.STOP_LOSS) # should be stoploss - drops 8%
|
||
tc_profit2 = BTContainer(data=data_profit, stop_loss=-0.10, roi=1,
|
||
trades=1, profit_perc=0.10557, sell_r=SellType.STOP_LOSS)
|
||
|
||
|
||
tc_loss0 = BTContainer(data=DataFrame([
|
||
[getdate('2018-07-08 18:00:00').datetime, 0.0009910,
|
||
0.001011, 0.00098618, 0.001000, 12345, 1, 0],
|
||
[getdate('2018-07-08 19:00:00').datetime, 0.001000,
|
||
0.001010, 0.0009900, 0.001000, 12345, 0, 0],
|
||
[getdate('2018-07-08 20:00:00').datetime, 0.001000,
|
||
0.001011, 0.0010618, 0.00091618, 12345, 0, 0],
|
||
[getdate('2018-07-08 21:00:00').datetime, 0.001000,
|
||
0.001011, 0.00098618, 0.00091618, 12345, 0, 0],
|
||
[getdate('2018-07-08 22:00:00').datetime, 0.001000,
|
||
0.001011, 0.00098618, 0.00091618, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.05, roi=1, trades=1, profit_perc=-0.08839, sell_r=SellType.STOP_LOSS)
|
||
|
||
|
||
# Test 1 Minus 8% Close
|
||
# Candle Data for test 1 – close at -8% (9200)
|
||
# Test with Stop-loss at 1%
|
||
# TC1: Stop-Loss Triggered 1% loss
|
||
tc1 = BTContainer(data=DataFrame([
|
||
[getdate('2018-06-10 07:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9200, 9200, 12345, 0, 0],
|
||
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9960, 9955, 12345, 0, 0],
|
||
[getdate('2018-06-10 11:00:00').datetime, 9955, 9975, 9955, 9990, 12345, 0, 0],
|
||
[getdate('2018-06-10 12:00:00').datetime, 9990, 9990, 9990, 9900, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.01, roi=1, trades=1, profit_perc=-0.01, sell_r=SellType.STOP_LOSS) # should be
|
||
# stop_loss=-0.01, roi=1, trades=1, profit_perc=-0.003, sell_r=SellType.FORCE_SELL) #
|
||
|
||
|
||
# Test 2 Minus 4% Low, minus 1% close
|
||
# Candle Data for test 2
|
||
# Test with Stop-Loss at 3%
|
||
# TC2: Stop-Loss Triggered 3% Loss
|
||
tc2 = BTContainer(data=DataFrame([
|
||
[getdate('2018-06-10 07:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9925, 9950, 12345, 0, 0],
|
||
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9600, 9925, 12345, 0, 0],
|
||
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
|
||
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.03, sell_r=SellType.STOP_LOSS) #should be
|
||
# stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.007, sell_r=SellType.FORCE_SELL) #
|
||
|
||
|
||
# Test 3 Candle drops 4%, Recovers 1%.
|
||
# Entry Criteria Met
|
||
# Candle drops 20%
|
||
# Candle Data for test 3
|
||
# Test with Stop-Loss at 2%
|
||
# TC3: Trade-A: Stop-Loss Triggered 2% Loss
|
||
# Trade-B: Stop-Loss Triggered 2% Loss
|
||
tc3 = BTContainer(data=DataFrame([
|
||
[getdate('2018-06-10 07:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9600, 9950, 12345, 0, 0],
|
||
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 1, 0],
|
||
[getdate('2018-06-10 11:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||
[getdate('2018-06-10 12:00:00').datetime, 9925, 9975, 8000, 8000, 12345, 0, 0],
|
||
[getdate('2018-06-10 13:00:00').datetime, 9900, 9950, 9950, 9900, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.02, roi=1, trades=2, profit_perc=-0.04, sell_r=SellType.STOP_LOSS) #should be
|
||
# stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.02, sell_r=SellType.STOP_LOSS) #should be
|
||
# stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL) #
|
||
|
||
|
||
# Test 4 Minus 3% / recovery +15%
|
||
# Candle Data for test 4 – Candle drops 3% Closed 15% up
|
||
# Test with Stop-loss at 2% ROI 6%
|
||
# TC4: Stop-Loss Triggered 2% Loss
|
||
tc4 = BTContainer(data=DataFrame([
|
||
[getdate('2018-06-10 07:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 09:00:00').datetime, 9975, 11500, 9700, 11500, 12345, 0, 0],
|
||
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
|
||
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.02, sell_r=SellType.STOP_LOSS) #should be
|
||
# stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL)
|
||
|
||
# Test 5 / Drops 0.5% Closes +20%
|
||
# Candle Data for test 5
|
||
# Set stop-loss at 1% ROI 3%
|
||
# TC5: ROI triggers 3% Gain
|
||
tc5 = BTContainer(data=DataFrame([
|
||
[getdate('2018-06-10 07:00:00').datetime, 10000, 10050, 9960, 9975, 12345, 1, 0],
|
||
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9960, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 09:00:00').datetime, 9975, 10050, 9950, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 10:00:00').datetime, 9950, 12000, 9950, 12000, 12345, 0, 0],
|
||
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
|
||
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.01, roi=0.03, trades=1, profit_perc=0.03, sell_r=SellType.ROI) #should be
|
||
# stop_loss=-0.01, roi=0.03, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL)
|
||
|
||
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
|
||
# Candle Data for test 6
|
||
# Set stop-loss at 2% ROI at 5%
|
||
# TC6: Stop-Loss triggers 2% Loss
|
||
tc6 = BTContainer(data=DataFrame([
|
||
[getdate('2018-06-10 07:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9700, 10100, 12345, 0, 0],
|
||
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
|
||
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.02, roi=0.05, trades=1, profit_perc=-0.02, sell_r=SellType.STOP_LOSS) #should be
|
||
# stop_loss=-0.02, roi=0.05, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL) #
|
||
|
||
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
|
||
# Candle Data for test 7
|
||
# Set stop-loss at 2% ROI at 3%
|
||
# TC7: ROI Triggers 3% Gain
|
||
tc7 = BTContainer(data=DataFrame([
|
||
[getdate('2018-06-10 07:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 0, 0],
|
||
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9900, 10100, 12345, 0, 0],
|
||
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
|
||
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||
], columns=columns),
|
||
stop_loss=-0.02, roi=0.03, trades=1, profit_perc=0.03, sell_r=SellType.ROI) #should be
|
||
# stop_loss=-0.02, roi=0.03, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL) #
|
||
|
||
TESTS = [
|
||
# tc_profit1,
|
||
# tc_profit2,
|
||
# tc_loss0,
|
||
tc1,
|
||
tc2,
|
||
tc3,
|
||
tc4,
|
||
tc5,
|
||
tc6,
|
||
tc7,
|
||
]
|
||
|
||
|
||
@pytest.mark.parametrize("data", TESTS)
|
||
def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
|
||
"""
|
||
run functional tests
|
||
"""
|
||
default_conf["stoploss"] = data.stop_loss
|
||
default_conf["minimal_roi"] = {"0": data.roi}
|
||
# mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||
# TODO: don't Mock fee to for now
|
||
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.0))
|
||
patch_exchange(mocker)
|
||
|
||
backtesting = Backtesting(default_conf)
|
||
backtesting.advise_buy = lambda a, m: data.data
|
||
backtesting.advise_sell = lambda a, m: data.data
|
||
caplog.set_level(logging.DEBUG)
|
||
|
||
pair = 'UNITTEST/BTC'
|
||
# Dummy data as we mock the analyze functions
|
||
data_processed = {pair: DataFrame()}
|
||
results = backtesting.backtest(
|
||
{
|
||
'stake_amount': default_conf['stake_amount'],
|
||
'processed': data_processed,
|
||
'max_open_trades': 10,
|
||
}
|
||
)
|
||
print(results.T)
|
||
|
||
assert len(results) == data.trades
|
||
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
|
||
if data.sell_r == SellType.STOP_LOSS:
|
||
assert log_has("Stop loss hit.", caplog.record_tuples)
|
||
else:
|
||
assert not log_has("Stop loss hit.", caplog.record_tuples)
|
||
log_test = (f'Force_selling still open trade UNITTEST/BTC with '
|
||
f'{results.iloc[-1].profit_percent} perc - {results.iloc[-1].profit_abs}')
|
||
if data.sell_r == SellType.FORCE_SELL:
|
||
assert log_has(log_test,
|
||
caplog.record_tuples)
|
||
else:
|
||
assert not log_has(log_test,
|
||
caplog.record_tuples)
|