mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
2300 lines
83 KiB
Python
2300 lines
83 KiB
Python
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
|
|
|
import random
|
|
from copy import deepcopy
|
|
from datetime import datetime, timedelta, timezone
|
|
from pathlib import Path
|
|
from unittest.mock import MagicMock, PropertyMock
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pytest
|
|
|
|
from freqtrade import constants
|
|
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
|
|
from freqtrade.configuration import TimeRange
|
|
from freqtrade.data import history
|
|
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
|
|
from freqtrade.data.converter import clean_ohlcv_dataframe
|
|
from freqtrade.data.dataprovider import DataProvider
|
|
from freqtrade.data.history import get_timerange
|
|
from freqtrade.enums import CandleType, ExitType, RunMode
|
|
from freqtrade.exceptions import DependencyException, OperationalException
|
|
from freqtrade.exchange import timeframe_to_next_date, timeframe_to_prev_date
|
|
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename, get_strategy_run_id
|
|
from freqtrade.optimize.backtesting import Backtesting
|
|
from freqtrade.persistence import LocalTrade, Trade
|
|
from freqtrade.resolvers import StrategyResolver
|
|
from freqtrade.util.datetime_helpers import dt_utc
|
|
from tests.conftest import (
|
|
CURRENT_TEST_STRATEGY,
|
|
EXMS,
|
|
get_args,
|
|
log_has,
|
|
log_has_re,
|
|
patch_exchange,
|
|
patched_configuration_load_config_file,
|
|
)
|
|
|
|
|
|
ORDER_TYPES = [
|
|
{"entry": "limit", "exit": "limit", "stoploss": "limit", "stoploss_on_exchange": False},
|
|
{"entry": "limit", "exit": "limit", "stoploss": "limit", "stoploss_on_exchange": True},
|
|
]
|
|
|
|
|
|
def trim_dictlist(dict_list, num):
|
|
new = {}
|
|
for pair, pair_data in dict_list.items():
|
|
new[pair] = pair_data[num:].reset_index()
|
|
return new
|
|
|
|
|
|
def load_data_test(what, testdatadir):
|
|
timerange = TimeRange.parse_timerange("1510694220-1510700340")
|
|
data = history.load_pair_history(
|
|
pair="UNITTEST/BTC",
|
|
datadir=testdatadir,
|
|
timeframe="1m",
|
|
timerange=timerange,
|
|
drop_incomplete=False,
|
|
fill_up_missing=False,
|
|
)
|
|
|
|
base = 0.001
|
|
if what == "raise":
|
|
data.loc[:, "open"] = data.index * base
|
|
data.loc[:, "high"] = data.index * base + 0.0001
|
|
data.loc[:, "low"] = data.index * base - 0.0001
|
|
data.loc[:, "close"] = data.index * base
|
|
|
|
if what == "lower":
|
|
data.loc[:, "open"] = 1 - data.index * base
|
|
data.loc[:, "high"] = 1 - data.index * base + 0.0001
|
|
data.loc[:, "low"] = 1 - data.index * base - 0.0001
|
|
data.loc[:, "close"] = 1 - data.index * base
|
|
|
|
if what == "sine":
|
|
hz = 0.1 # frequency
|
|
data.loc[:, "open"] = np.sin(data.index * hz) / 1000 + base
|
|
data.loc[:, "high"] = np.sin(data.index * hz) / 1000 + base + 0.0001
|
|
data.loc[:, "low"] = np.sin(data.index * hz) / 1000 + base - 0.0001
|
|
data.loc[:, "close"] = np.sin(data.index * hz) / 1000 + base
|
|
|
|
return {
|
|
"UNITTEST/BTC": clean_ohlcv_dataframe(
|
|
data, timeframe="1m", pair="UNITTEST/BTC", fill_missing=True, drop_incomplete=True
|
|
)
|
|
}
|
|
|
|
|
|
# FIX: fixturize this?
|
|
def _make_backtest_conf(mocker, datadir, conf=None, pair="UNITTEST/BTC"):
|
|
data = history.load_data(datadir=datadir, timeframe="1m", pairs=[pair])
|
|
data = trim_dictlist(data, -201)
|
|
patch_exchange(mocker)
|
|
backtesting = Backtesting(conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
return {
|
|
"processed": processed,
|
|
"start_date": min_date,
|
|
"end_date": max_date,
|
|
}
|
|
|
|
|
|
def _trend(signals, buy_value, sell_value):
|
|
n = len(signals["low"])
|
|
buy = np.zeros(n)
|
|
sell = np.zeros(n)
|
|
for i in range(0, len(signals["date"])):
|
|
if random.random() > 0.5: # Both buy and sell signals at same timeframe
|
|
buy[i] = buy_value
|
|
sell[i] = sell_value
|
|
signals["enter_long"] = buy
|
|
signals["exit_long"] = sell
|
|
signals["enter_short"] = 0
|
|
signals["exit_short"] = 0
|
|
return signals
|
|
|
|
|
|
def _trend_alternate(dataframe=None, metadata=None):
|
|
signals = dataframe
|
|
low = signals["low"]
|
|
n = len(low)
|
|
buy = np.zeros(n)
|
|
sell = np.zeros(n)
|
|
for i in range(0, len(buy)):
|
|
if i % 2 == 0:
|
|
buy[i] = 1
|
|
else:
|
|
sell[i] = 1
|
|
signals["enter_long"] = buy
|
|
signals["exit_long"] = sell
|
|
signals["enter_short"] = 0
|
|
signals["exit_short"] = 0
|
|
return dataframe
|
|
|
|
|
|
# Unit tests
|
|
def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
CURRENT_TEST_STRATEGY,
|
|
"--export",
|
|
"none",
|
|
]
|
|
|
|
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
|
|
assert "max_open_trades" in config
|
|
assert "stake_currency" in config
|
|
assert "stake_amount" in config
|
|
assert "exchange" in config
|
|
assert "pair_whitelist" in config["exchange"]
|
|
assert "datadir" in config
|
|
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
|
|
assert "timeframe" in config
|
|
assert not log_has_re("Parameter -i/--ticker-interval detected .*", caplog)
|
|
|
|
assert "position_stacking" not in config
|
|
assert not log_has("Parameter --enable-position-stacking detected ...", caplog)
|
|
|
|
assert "timerange" not in config
|
|
assert "export" in config
|
|
assert config["export"] == "none"
|
|
assert "runmode" in config
|
|
assert config["runmode"] == RunMode.BACKTEST
|
|
|
|
|
|
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
mocker.patch("freqtrade.configuration.configuration.create_datadir", lambda c, x: x)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
CURRENT_TEST_STRATEGY,
|
|
"--datadir",
|
|
"/foo/bar",
|
|
"--timeframe",
|
|
"1m",
|
|
"--enable-position-stacking",
|
|
"--disable-max-market-positions",
|
|
"--timerange",
|
|
":100",
|
|
"--export-filename",
|
|
"foo_bar.json",
|
|
"--fee",
|
|
"0",
|
|
]
|
|
|
|
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
|
|
assert "max_open_trades" in config
|
|
assert "stake_currency" in config
|
|
assert "stake_amount" in config
|
|
assert "exchange" in config
|
|
assert "pair_whitelist" in config["exchange"]
|
|
assert "datadir" in config
|
|
assert config["runmode"] == RunMode.BACKTEST
|
|
|
|
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
|
|
assert "timeframe" in config
|
|
assert log_has("Parameter -i/--timeframe detected ... Using timeframe: 1m ...", caplog)
|
|
|
|
assert "position_stacking" in config
|
|
assert log_has("Parameter --enable-position-stacking detected ...", caplog)
|
|
|
|
assert "use_max_market_positions" in config
|
|
assert log_has("Parameter --disable-max-market-positions detected ...", caplog)
|
|
assert log_has("max_open_trades set to unlimited ...", caplog)
|
|
|
|
assert "timerange" in config
|
|
assert log_has("Parameter --timerange detected: {} ...".format(config["timerange"]), caplog)
|
|
|
|
assert "export" in config
|
|
assert "exportfilename" in config
|
|
assert isinstance(config["exportfilename"], Path)
|
|
assert log_has("Storing backtest results to {} ...".format(config["exportfilename"]), caplog)
|
|
|
|
assert "fee" in config
|
|
assert log_has("Parameter --fee detected, setting fee to: {} ...".format(config["fee"]), caplog)
|
|
|
|
|
|
def test_setup_optimize_configuration_stake_amount(mocker, default_conf, caplog) -> None:
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
CURRENT_TEST_STRATEGY,
|
|
"--stake-amount",
|
|
"1",
|
|
"--starting-balance",
|
|
"2",
|
|
]
|
|
|
|
conf = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
|
|
assert isinstance(conf, dict)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
CURRENT_TEST_STRATEGY,
|
|
"--stake-amount",
|
|
"1",
|
|
"--starting-balance",
|
|
"0.5",
|
|
]
|
|
with pytest.raises(OperationalException, match=r"Starting balance .* smaller .*"):
|
|
setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
|
|
|
|
|
|
def test_start(mocker, fee, default_conf, caplog) -> None:
|
|
start_mock = MagicMock()
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
patch_exchange(mocker)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.start", start_mock)
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
CURRENT_TEST_STRATEGY,
|
|
]
|
|
pargs = get_args(args)
|
|
start_backtesting(pargs)
|
|
assert log_has("Starting freqtrade in Backtesting mode", caplog)
|
|
assert start_mock.call_count == 1
|
|
|
|
|
|
@pytest.mark.parametrize("order_types", ORDER_TYPES)
|
|
def test_backtesting_init(mocker, default_conf, order_types) -> None:
|
|
"""
|
|
Check that stoploss_on_exchange is set to False while backtesting
|
|
since backtesting assumes a perfect stoploss anyway.
|
|
"""
|
|
default_conf["order_types"] = order_types
|
|
patch_exchange(mocker)
|
|
get_fee = mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
assert backtesting.config == default_conf
|
|
assert backtesting.timeframe == "5m"
|
|
assert callable(backtesting.strategy.advise_all_indicators)
|
|
assert callable(backtesting.strategy.advise_entry)
|
|
assert callable(backtesting.strategy.advise_exit)
|
|
assert isinstance(backtesting.strategy.dp, DataProvider)
|
|
get_fee.assert_called()
|
|
assert backtesting.fee == 0.5
|
|
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
|
|
assert backtesting.strategy.bot_started is True
|
|
|
|
|
|
def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None:
|
|
patch_exchange(mocker)
|
|
del default_conf["timeframe"]
|
|
default_conf["strategy_list"] = [CURRENT_TEST_STRATEGY, "HyperoptableStrategy"]
|
|
|
|
mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
|
|
with pytest.raises(
|
|
OperationalException, match=r"Timeframe needs to be set in either configuration"
|
|
):
|
|
Backtesting(default_conf)
|
|
|
|
|
|
def test_data_with_fee(default_conf, mocker) -> None:
|
|
patch_exchange(mocker)
|
|
default_conf["fee"] = 0.01234
|
|
|
|
fee_mock = mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
assert backtesting.fee == 0.01234
|
|
assert fee_mock.call_count == 0
|
|
|
|
default_conf["fee"] = 0.0
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
assert backtesting.fee == 0.0
|
|
assert fee_mock.call_count == 0
|
|
|
|
|
|
def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
|
|
patch_exchange(mocker)
|
|
timerange = TimeRange.parse_timerange("1510694220-1510700340")
|
|
data = history.load_data(
|
|
testdatadir, "1m", ["UNITTEST/BTC"], timerange=timerange, fill_up_missing=True
|
|
)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
assert len(processed["UNITTEST/BTC"]) == 103
|
|
|
|
# Load strategy to compare the result between Backtesting function and strategy are the same
|
|
strategy = StrategyResolver.load_strategy(default_conf)
|
|
|
|
processed2 = strategy.advise_all_indicators(data)
|
|
assert processed["UNITTEST/BTC"].equals(processed2["UNITTEST/BTC"])
|
|
|
|
|
|
def test_backtest_abort(default_conf, mocker, testdatadir) -> None:
|
|
patch_exchange(mocker)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting.check_abort()
|
|
|
|
backtesting.abort = True
|
|
|
|
with pytest.raises(DependencyException, match="Stop requested"):
|
|
backtesting.check_abort()
|
|
# abort flag resets
|
|
assert backtesting.abort is False
|
|
assert backtesting.progress.progress == 0
|
|
|
|
|
|
def test_backtesting_start(default_conf, mocker, caplog) -> None:
|
|
def get_timerange(input1):
|
|
return dt_utc(2017, 11, 14, 21, 17), dt_utc(2017, 11, 14, 22, 59)
|
|
|
|
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
|
|
patch_exchange(mocker)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
|
|
mocker.patch("freqtrade.optimize.backtesting.generate_backtest_stats")
|
|
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results")
|
|
sbs = mocker.patch("freqtrade.optimize.backtesting.store_backtest_stats")
|
|
sbc = mocker.patch("freqtrade.optimize.backtesting.store_backtest_analysis_results")
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["UNITTEST/BTC"]),
|
|
)
|
|
|
|
default_conf["timeframe"] = "1m"
|
|
default_conf["export"] = "signals"
|
|
default_conf["exportfilename"] = "export.txt"
|
|
default_conf["timerange"] = "-1510694220"
|
|
default_conf["runmode"] = RunMode.BACKTEST
|
|
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.bot_loop_start = MagicMock()
|
|
backtesting.strategy.bot_start = MagicMock()
|
|
backtesting.start()
|
|
# check the logs, that will contain the backtest result
|
|
exists = ["Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days)."]
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
assert backtesting.strategy.dp._pairlists is not None
|
|
assert backtesting.strategy.bot_start.call_count == 1
|
|
assert backtesting.strategy.bot_loop_start.call_count == 0
|
|
assert sbs.call_count == 1
|
|
assert sbc.call_count == 1
|
|
|
|
|
|
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
|
|
def get_timerange(input1):
|
|
return dt_utc(2017, 11, 14, 21, 17), dt_utc(2017, 11, 14, 22, 59)
|
|
|
|
mocker.patch(
|
|
"freqtrade.data.history.history_utils.load_pair_history",
|
|
MagicMock(return_value=pd.DataFrame()),
|
|
)
|
|
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
|
|
patch_exchange(mocker)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["UNITTEST/BTC"]),
|
|
)
|
|
|
|
default_conf["timeframe"] = "1m"
|
|
default_conf["export"] = "none"
|
|
default_conf["timerange"] = "20180101-20180102"
|
|
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
with pytest.raises(OperationalException, match="No data found. Terminating."):
|
|
backtesting.start()
|
|
|
|
|
|
def test_backtesting_no_pair_left(default_conf, mocker) -> None:
|
|
mocker.patch(f"{EXMS}.exchange_has", MagicMock(return_value=True))
|
|
mocker.patch(
|
|
"freqtrade.data.history.history_utils.load_pair_history",
|
|
MagicMock(return_value=pd.DataFrame()),
|
|
)
|
|
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
|
|
patch_exchange(mocker)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist", PropertyMock(return_value=[])
|
|
)
|
|
|
|
default_conf["timeframe"] = "1m"
|
|
default_conf["export"] = "none"
|
|
default_conf["timerange"] = "20180101-20180102"
|
|
|
|
with pytest.raises(OperationalException, match="No pair in whitelist."):
|
|
Backtesting(default_conf)
|
|
|
|
default_conf.update(
|
|
{
|
|
"pairlists": [{"method": "StaticPairList"}],
|
|
"timeframe_detail": "1d",
|
|
}
|
|
)
|
|
|
|
with pytest.raises(
|
|
OperationalException, match="Detail timeframe must be smaller than strategy timeframe."
|
|
):
|
|
Backtesting(default_conf)
|
|
|
|
|
|
def test_backtesting_pairlist_list(default_conf, mocker, tickers) -> None:
|
|
mocker.patch(f"{EXMS}.exchange_has", MagicMock(return_value=True))
|
|
mocker.patch(f"{EXMS}.get_tickers", tickers)
|
|
mocker.patch(f"{EXMS}.price_to_precision", lambda s, x, y: y)
|
|
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
|
|
patch_exchange(mocker)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["XRP/BTC"]),
|
|
)
|
|
mocker.patch("freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist")
|
|
|
|
default_conf["ticker_interval"] = "1m"
|
|
default_conf["export"] = "none"
|
|
# Use stoploss from strategy
|
|
del default_conf["stoploss"]
|
|
default_conf["timerange"] = "20180101-20180102"
|
|
|
|
default_conf["pairlists"] = [{"method": "VolumePairList", "number_assets": 5}]
|
|
with pytest.raises(
|
|
OperationalException,
|
|
match=r"VolumePairList not allowed for backtesting\..*StaticPairList.*",
|
|
):
|
|
Backtesting(default_conf)
|
|
|
|
default_conf["pairlists"] = [
|
|
{"method": "StaticPairList"},
|
|
{"method": "PrecisionFilter"},
|
|
]
|
|
Backtesting(default_conf)
|
|
|
|
# Multiple strategies
|
|
default_conf["strategy_list"] = [CURRENT_TEST_STRATEGY, "StrategyTestV2"]
|
|
with pytest.raises(
|
|
OperationalException,
|
|
match="PrecisionFilter not allowed for backtesting multiple strategies.",
|
|
):
|
|
Backtesting(default_conf)
|
|
|
|
|
|
def test_backtest__enter_trade(default_conf, fee, mocker) -> None:
|
|
default_conf["use_exit_signal"] = False
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
patch_exchange(mocker)
|
|
default_conf["stake_amount"] = "unlimited"
|
|
default_conf["max_open_trades"] = 2
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
pair = "UNITTEST/BTC"
|
|
row = [
|
|
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
|
|
1, # Buy
|
|
0.001, # Open
|
|
0.0011, # Close
|
|
0, # Sell
|
|
0.00099, # Low
|
|
0.0012, # High
|
|
"", # Buy Signal Name
|
|
]
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert isinstance(trade, LocalTrade)
|
|
assert trade.stake_amount == 495
|
|
|
|
# Fake 2 trades, so there's not enough amount for the next trade left.
|
|
LocalTrade.trades_open.append(trade)
|
|
backtesting.wallets.update()
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert trade is None
|
|
LocalTrade.trades_open.pop()
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert trade is not None
|
|
LocalTrade.trades_open.pop()
|
|
|
|
backtesting.strategy.custom_stake_amount = lambda **kwargs: 123.5
|
|
backtesting.wallets.update()
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
LocalTrade.trades_open.pop()
|
|
assert trade
|
|
assert trade.stake_amount == 123.5
|
|
|
|
# In case of error - use proposed stake
|
|
backtesting.strategy.custom_stake_amount = lambda **kwargs: 20 / 0
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
LocalTrade.trades_open.pop()
|
|
assert trade
|
|
assert trade.stake_amount == 495
|
|
assert trade.is_short is False
|
|
|
|
trade = backtesting._enter_trade(pair, row=row, direction="short")
|
|
LocalTrade.trades_open.pop()
|
|
assert trade
|
|
assert trade.stake_amount == 495
|
|
assert trade.is_short is True
|
|
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=300.0)
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
LocalTrade.trades_open.pop()
|
|
assert trade
|
|
assert trade.stake_amount == 300.0
|
|
|
|
|
|
def test_backtest__enter_trade_futures(default_conf_usdt, fee, mocker) -> None:
|
|
default_conf_usdt["use_exit_signal"] = False
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
mocker.patch(f"{EXMS}.get_max_leverage", return_value=100)
|
|
mocker.patch("freqtrade.optimize.backtesting.price_to_precision", lambda p, *args: p)
|
|
patch_exchange(mocker)
|
|
default_conf_usdt["stake_amount"] = 300
|
|
default_conf_usdt["max_open_trades"] = 2
|
|
default_conf_usdt["trading_mode"] = "futures"
|
|
default_conf_usdt["margin_mode"] = "isolated"
|
|
default_conf_usdt["stake_currency"] = "USDT"
|
|
default_conf_usdt["exchange"]["pair_whitelist"] = [".*"]
|
|
backtesting = Backtesting(default_conf_usdt)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting._run_funding_fees")
|
|
pair = "ETH/USDT:USDT"
|
|
row = [
|
|
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
|
|
0.1, # Open
|
|
0.12, # High
|
|
0.099, # Low
|
|
0.11, # Close
|
|
1, # enter_long
|
|
0, # exit_long
|
|
1, # enter_short
|
|
0, # exit_hsort
|
|
"", # Long Signal Name
|
|
"", # Short Signal Name
|
|
"", # Exit Signal Name
|
|
]
|
|
|
|
backtesting.strategy.leverage = MagicMock(return_value=5.0)
|
|
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
|
|
|
|
# leverage = 5
|
|
# ep1(trade.open_rate) = 0.1
|
|
# position(trade.amount) = 15000
|
|
# stake_amount = 300 -> wb = 300 / 5 = 60
|
|
# mmr = 0.01
|
|
# cum_b = 0.01
|
|
# side_1: -1 if is_short else 1
|
|
# liq_buffer = 0.05
|
|
#
|
|
# Binance, Long
|
|
# liquidation_price
|
|
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
|
|
# = ((300 + 0.01) - (1 * 15000 * 0.1)) / ((15000 * 0.01) - (1 * 15000))
|
|
# = 0.0008080740740740741
|
|
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
|
|
# = 0.08080740740740741 + ((0.1 - 0.08080740740740741) * 0.05 * 1)
|
|
# = 0.08176703703703704
|
|
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert pytest.approx(trade.liquidation_price) == 0.081767037
|
|
|
|
# Binance, Short
|
|
# liquidation_price
|
|
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
|
|
# = ((300 + 0.01) - ((-1) * 15000 * 0.1)) / ((15000 * 0.01) - ((-1) * 15000))
|
|
# = 0.0011881254125412541
|
|
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
|
|
# = 0.11881254125412541 + (abs(0.1 - 0.11881254125412541) * 0.05 * -1)
|
|
# = 0.11787191419141915
|
|
|
|
trade = backtesting._enter_trade(pair, row=row, direction="short")
|
|
assert pytest.approx(trade.liquidation_price) == 0.11787191
|
|
assert pytest.approx(trade.orders[0].cost) == (
|
|
trade.stake_amount * trade.leverage + trade.fee_open
|
|
)
|
|
assert pytest.approx(trade.orders[-1].stake_amount) == trade.stake_amount
|
|
|
|
# Stake-amount too high!
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=600.0)
|
|
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert trade is None
|
|
|
|
# Stake-amount throwing error
|
|
mocker.patch(
|
|
"freqtrade.wallets.Wallets.get_trade_stake_amount", side_effect=DependencyException
|
|
)
|
|
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert trade is None
|
|
|
|
|
|
def test_backtest__check_trade_exit(default_conf, mocker) -> None:
|
|
default_conf["use_exit_signal"] = False
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
default_conf["timeframe_detail"] = "1m"
|
|
default_conf["max_open_trades"] = 2
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
pair = "UNITTEST/BTC"
|
|
row = [
|
|
pd.Timestamp(year=2020, month=1, day=1, hour=4, minute=55, tzinfo=timezone.utc),
|
|
200, # Open
|
|
201.5, # High
|
|
195, # Low
|
|
201, # Close
|
|
1, # enter_long
|
|
0, # exit_long
|
|
0, # enter_short
|
|
0, # exit_hsort
|
|
"", # Long Signal Name
|
|
"", # Short Signal Name
|
|
"", # Exit Signal Name
|
|
]
|
|
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert isinstance(trade, LocalTrade)
|
|
|
|
row_sell = [
|
|
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
|
|
200, # Open
|
|
210.5, # High
|
|
195, # Low
|
|
201, # Close
|
|
0, # enter_long
|
|
0, # exit_long
|
|
0, # enter_short
|
|
0, # exit_short
|
|
"", # long Signal Name
|
|
"", # Short Signal Name
|
|
"", # Exit Signal Name
|
|
]
|
|
|
|
# No data available.
|
|
res = backtesting._check_trade_exit(trade, row_sell, row_sell[0].to_pydatetime())
|
|
assert res is not None
|
|
assert res.exit_reason == ExitType.ROI.value
|
|
assert res.close_date_utc == datetime(2020, 1, 1, 5, 0, tzinfo=timezone.utc)
|
|
|
|
# Enter new trade
|
|
trade = backtesting._enter_trade(pair, row=row, direction="long")
|
|
assert isinstance(trade, LocalTrade)
|
|
# Assign empty ... no result.
|
|
backtesting.detail_data[pair] = pd.DataFrame(
|
|
[],
|
|
columns=[
|
|
"date",
|
|
"open",
|
|
"high",
|
|
"low",
|
|
"close",
|
|
"enter_long",
|
|
"exit_long",
|
|
"enter_short",
|
|
"exit_short",
|
|
"long_tag",
|
|
"short_tag",
|
|
"exit_tag",
|
|
],
|
|
)
|
|
|
|
res = backtesting._check_trade_exit(trade, row, row[0].to_pydatetime())
|
|
assert res is None
|
|
|
|
|
|
def test_backtest_one(default_conf, mocker, testdatadir) -> None:
|
|
default_conf["use_exit_signal"] = False
|
|
default_conf["max_open_trades"] = 10
|
|
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
pair = "UNITTEST/BTC"
|
|
timerange = TimeRange("date", None, 1517227800, 0)
|
|
data = history.load_data(
|
|
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
|
|
)
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
backtesting.strategy.order_filled = MagicMock()
|
|
min_date, max_date = get_timerange(processed)
|
|
|
|
result = backtesting.backtest(
|
|
processed=deepcopy(processed),
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
results = result["results"]
|
|
assert not results.empty
|
|
assert len(results) == 2
|
|
|
|
expected = pd.DataFrame(
|
|
{
|
|
"pair": [pair, pair],
|
|
"stake_amount": [0.001, 0.001],
|
|
"max_stake_amount": [0.001, 0.001],
|
|
"amount": [0.00957442, 0.0097064],
|
|
"open_date": pd.to_datetime(
|
|
[dt_utc(2018, 1, 29, 18, 40, 0), dt_utc(2018, 1, 30, 3, 30, 0)], utc=True
|
|
),
|
|
"close_date": pd.to_datetime(
|
|
[dt_utc(2018, 1, 29, 22, 35, 0), dt_utc(2018, 1, 30, 4, 10, 0)], utc=True
|
|
),
|
|
"open_rate": [0.104445, 0.10302485],
|
|
"close_rate": [0.104969, 0.103541],
|
|
"fee_open": [0.0025, 0.0025],
|
|
"fee_close": [0.0025, 0.0025],
|
|
"trade_duration": [235, 40],
|
|
"profit_ratio": [0.0, 0.0],
|
|
"profit_abs": [0.0, 0.0],
|
|
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value],
|
|
"initial_stop_loss_abs": [0.0940005, 0.09272236],
|
|
"initial_stop_loss_ratio": [-0.1, -0.1],
|
|
"stop_loss_abs": [0.0940005, 0.09272236],
|
|
"stop_loss_ratio": [-0.1, -0.1],
|
|
"min_rate": [0.10370188, 0.10300000000000001],
|
|
"max_rate": [0.10501, 0.1038888],
|
|
"is_open": [False, False],
|
|
"enter_tag": ["", ""],
|
|
"leverage": [1.0, 1.0],
|
|
"is_short": [False, False],
|
|
"open_timestamp": [1517251200000, 1517283000000],
|
|
"close_timestamp": [1517265300000, 1517285400000],
|
|
"orders": [
|
|
[
|
|
{
|
|
"amount": 0.00957442,
|
|
"safe_price": 0.104445,
|
|
"ft_order_side": "buy",
|
|
"order_filled_timestamp": 1517251200000,
|
|
"ft_is_entry": True,
|
|
"ft_order_tag": "",
|
|
},
|
|
{
|
|
"amount": 0.00957442,
|
|
"safe_price": 0.10496853383458644,
|
|
"ft_order_side": "sell",
|
|
"order_filled_timestamp": 1517265300000,
|
|
"ft_is_entry": False,
|
|
"ft_order_tag": "roi",
|
|
},
|
|
],
|
|
[
|
|
{
|
|
"amount": 0.0097064,
|
|
"safe_price": 0.10302485,
|
|
"ft_order_side": "buy",
|
|
"order_filled_timestamp": 1517283000000,
|
|
"ft_is_entry": True,
|
|
"ft_order_tag": "",
|
|
},
|
|
{
|
|
"amount": 0.0097064,
|
|
"safe_price": 0.10354126528822055,
|
|
"ft_order_side": "sell",
|
|
"order_filled_timestamp": 1517285400000,
|
|
"ft_is_entry": False,
|
|
"ft_order_tag": "roi",
|
|
},
|
|
],
|
|
],
|
|
}
|
|
)
|
|
pd.testing.assert_frame_equal(results, expected)
|
|
assert "orders" in results.columns
|
|
data_pair = processed[pair]
|
|
# Called once per order
|
|
assert backtesting.strategy.order_filled.call_count == 4
|
|
for _, t in results.iterrows():
|
|
assert len(t["orders"]) == 2
|
|
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
|
|
# Check open trade rate aligns to open rate
|
|
assert not ln.empty
|
|
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
|
|
# check close trade rate aligns to close rate or is between high and low
|
|
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
|
|
assert round(ln1.iloc[0]["open"], 6) == round(t["close_rate"], 6) or round(
|
|
ln1.iloc[0]["low"], 6
|
|
) < round(t["close_rate"], 6) < round(ln1.iloc[0]["high"], 6)
|
|
|
|
|
|
@pytest.mark.parametrize("use_detail", [True, False])
|
|
def test_backtest_one_detail(default_conf_usdt, mocker, testdatadir, use_detail) -> None:
|
|
default_conf_usdt["use_exit_signal"] = False
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
if use_detail:
|
|
default_conf_usdt["timeframe_detail"] = "1m"
|
|
|
|
def advise_entry(df, *args, **kwargs):
|
|
# Mock function to force several entries
|
|
df.loc[(df["rsi"] < 40), "enter_long"] = 1
|
|
return df
|
|
|
|
def custom_entry_price(proposed_rate, **kwargs):
|
|
return proposed_rate * 0.997
|
|
|
|
default_conf_usdt["max_open_trades"] = 10
|
|
|
|
backtesting = Backtesting(default_conf_usdt)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.populate_entry_trend = advise_entry
|
|
backtesting.strategy.custom_entry_price = custom_entry_price
|
|
pair = "XRP/ETH"
|
|
# Pick a timerange adapted to the pair we use to test
|
|
timerange = TimeRange.parse_timerange("20191010-20191013")
|
|
data = history.load_data(datadir=testdatadir, timeframe="5m", pairs=[pair], timerange=timerange)
|
|
if use_detail:
|
|
data_1m = history.load_data(
|
|
datadir=testdatadir, timeframe="1m", pairs=[pair], timerange=timerange
|
|
)
|
|
backtesting.detail_data = data_1m
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
|
|
result = backtesting.backtest(
|
|
processed=deepcopy(processed),
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
results = result["results"]
|
|
assert not results.empty
|
|
# Timeout settings from default_conf = entry: 10, exit: 30
|
|
assert len(results) == (2 if use_detail else 3)
|
|
|
|
assert "orders" in results.columns
|
|
data_pair = processed[pair]
|
|
|
|
data_1m_pair = data_1m[pair] if use_detail else pd.DataFrame()
|
|
late_entry = 0
|
|
for _, t in results.iterrows():
|
|
assert len(t["orders"]) == 2
|
|
|
|
entryo = t["orders"][0]
|
|
entry_ts = datetime.fromtimestamp(entryo["order_filled_timestamp"] // 1000, tz=timezone.utc)
|
|
if entry_ts > t["open_date"]:
|
|
late_entry += 1
|
|
|
|
# Get "entry fill" candle
|
|
ln = (
|
|
data_1m_pair.loc[data_1m_pair["date"] == entry_ts]
|
|
if use_detail
|
|
else data_pair.loc[data_pair["date"] == entry_ts]
|
|
)
|
|
# Check open trade rate aligns to open rate
|
|
assert not ln.empty
|
|
|
|
# assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
|
|
assert (
|
|
round(ln.iloc[0]["low"], 6) <= round(t["open_rate"], 6) <= round(ln.iloc[0]["high"], 6)
|
|
)
|
|
# check close trade rate aligns to close rate or is between high and low
|
|
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
|
|
if use_detail:
|
|
ln1_1m = data_1m_pair.loc[data_1m_pair["date"] == t["close_date"]]
|
|
assert not ln1.empty or not ln1_1m.empty
|
|
else:
|
|
assert not ln1.empty
|
|
ln2 = ln1_1m if ln1.empty else ln1
|
|
|
|
assert (
|
|
round(ln2.iloc[0]["low"], 6)
|
|
<= round(t["close_rate"], 6)
|
|
<= round(ln2.iloc[0]["high"], 6)
|
|
)
|
|
|
|
assert late_entry > 0
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"use_detail,exp_funding_fee, exp_ff_updates",
|
|
[
|
|
(True, -0.018054162, 11),
|
|
(False, -0.01780296, 5),
|
|
],
|
|
)
|
|
def test_backtest_one_detail_futures(
|
|
default_conf_usdt, mocker, testdatadir, use_detail, exp_funding_fee, exp_ff_updates
|
|
) -> None:
|
|
default_conf_usdt["use_exit_signal"] = False
|
|
default_conf_usdt["trading_mode"] = "futures"
|
|
default_conf_usdt["margin_mode"] = "isolated"
|
|
default_conf_usdt["candle_type_def"] = CandleType.FUTURES
|
|
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["XRP/USDT:USDT"]),
|
|
)
|
|
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
|
|
default_conf_usdt["timeframe"] = "1h"
|
|
if use_detail:
|
|
default_conf_usdt["timeframe_detail"] = "5m"
|
|
|
|
def advise_entry(df, *args, **kwargs):
|
|
# Mock function to force several entries
|
|
df.loc[(df["rsi"] < 40), "enter_long"] = 1
|
|
return df
|
|
|
|
def custom_entry_price(proposed_rate, **kwargs):
|
|
return proposed_rate * 0.997
|
|
|
|
default_conf_usdt["max_open_trades"] = 10
|
|
|
|
backtesting = Backtesting(default_conf_usdt)
|
|
ff_spy = mocker.spy(backtesting.exchange, "calculate_funding_fees")
|
|
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.populate_entry_trend = advise_entry
|
|
backtesting.strategy.custom_entry_price = custom_entry_price
|
|
pair = "XRP/USDT:USDT"
|
|
# Pick a timerange adapted to the pair we use to test
|
|
timerange = TimeRange.parse_timerange("20211117-20211119")
|
|
data = history.load_data(
|
|
datadir=Path(testdatadir),
|
|
timeframe="1h",
|
|
pairs=[pair],
|
|
timerange=timerange,
|
|
candle_type=CandleType.FUTURES,
|
|
)
|
|
backtesting.load_bt_data_detail()
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
|
|
result = backtesting.backtest(
|
|
processed=deepcopy(processed),
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
results = result["results"]
|
|
assert not results.empty
|
|
# Timeout settings from default_conf = entry: 10, exit: 30
|
|
assert len(results) == (5 if use_detail else 2)
|
|
|
|
assert "orders" in results.columns
|
|
data_pair = processed[pair]
|
|
|
|
data_1m_pair = backtesting.detail_data[pair] if use_detail else pd.DataFrame()
|
|
late_entry = 0
|
|
for _, t in results.iterrows():
|
|
assert len(t["orders"]) == 2
|
|
|
|
entryo = t["orders"][0]
|
|
entry_ts = datetime.fromtimestamp(entryo["order_filled_timestamp"] // 1000, tz=timezone.utc)
|
|
if entry_ts > t["open_date"]:
|
|
late_entry += 1
|
|
|
|
# Get "entry fill" candle
|
|
ln = (
|
|
data_1m_pair.loc[data_1m_pair["date"] == entry_ts]
|
|
if use_detail
|
|
else data_pair.loc[data_pair["date"] == entry_ts]
|
|
)
|
|
# Check open trade rate aligns to open rate
|
|
assert not ln.empty
|
|
|
|
assert (
|
|
round(ln.iloc[0]["low"], 6) <= round(t["open_rate"], 6) <= round(ln.iloc[0]["high"], 6)
|
|
)
|
|
# check close trade rate aligns to close rate or is between high and low
|
|
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
|
|
if use_detail:
|
|
ln1_1m = data_1m_pair.loc[data_1m_pair["date"] == t["close_date"]]
|
|
assert not ln1.empty or not ln1_1m.empty
|
|
else:
|
|
assert not ln1.empty
|
|
ln2 = ln1_1m if ln1.empty else ln1
|
|
|
|
assert (
|
|
round(ln2.iloc[0]["low"], 6)
|
|
<= round(t["close_rate"], 6)
|
|
<= round(ln2.iloc[0]["high"], 6)
|
|
)
|
|
assert pytest.approx(Trade.trades[1].funding_fees) == exp_funding_fee
|
|
assert ff_spy.call_count == exp_ff_updates
|
|
# assert late_entry > 0
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"use_detail,entries,max_stake,ff_updates,expected_ff",
|
|
[
|
|
(True, 50, 3000, 54, -1.18038144),
|
|
(False, 6, 360, 10, -0.14679994),
|
|
],
|
|
)
|
|
def test_backtest_one_detail_futures_funding_fees(
|
|
default_conf_usdt,
|
|
fee,
|
|
mocker,
|
|
testdatadir,
|
|
use_detail,
|
|
entries,
|
|
max_stake,
|
|
ff_updates,
|
|
expected_ff,
|
|
) -> None:
|
|
"""
|
|
Funding fees are expected to differ, as the maximum position size differs.
|
|
"""
|
|
default_conf_usdt["use_exit_signal"] = False
|
|
default_conf_usdt["trading_mode"] = "futures"
|
|
default_conf_usdt["margin_mode"] = "isolated"
|
|
default_conf_usdt["candle_type_def"] = CandleType.FUTURES
|
|
default_conf_usdt["minimal_roi"] = {"0": 1}
|
|
default_conf_usdt["dry_run_wallet"] = 100000
|
|
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["XRP/USDT:USDT"]),
|
|
)
|
|
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
|
|
default_conf_usdt["timeframe"] = "1h"
|
|
if use_detail:
|
|
default_conf_usdt["timeframe_detail"] = "5m"
|
|
patch_exchange(mocker)
|
|
|
|
def advise_entry(df, *args, **kwargs):
|
|
# Mock function to force several entries
|
|
df.loc[:, "enter_long"] = 1
|
|
return df
|
|
|
|
def adjust_trade_position(trade, current_time, **kwargs):
|
|
if current_time > datetime(2021, 11, 18, 2, 0, 0, tzinfo=timezone.utc):
|
|
return None
|
|
return default_conf_usdt["stake_amount"]
|
|
|
|
default_conf_usdt["max_open_trades"] = 1
|
|
|
|
backtesting = Backtesting(default_conf_usdt)
|
|
ff_spy = mocker.spy(backtesting.exchange, "calculate_funding_fees")
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.populate_entry_trend = advise_entry
|
|
backtesting.strategy.adjust_trade_position = adjust_trade_position
|
|
backtesting.strategy.leverage = lambda **kwargs: 1
|
|
backtesting.strategy.position_adjustment_enable = True
|
|
pair = "XRP/USDT:USDT"
|
|
# Pick a timerange adapted to the pair we use to test
|
|
timerange = TimeRange.parse_timerange("20211117-20211119")
|
|
data = history.load_data(
|
|
datadir=Path(testdatadir),
|
|
timeframe="1h",
|
|
pairs=[pair],
|
|
timerange=timerange,
|
|
candle_type=CandleType.FUTURES,
|
|
)
|
|
backtesting.load_bt_data_detail()
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
|
|
result = backtesting.backtest(
|
|
processed=deepcopy(processed),
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
results = result["results"]
|
|
assert not results.empty
|
|
# Only one result - as we're not selling.
|
|
assert len(results) == 1
|
|
|
|
assert "orders" in results.columns
|
|
# funding_fees have been calculated for each funding-fee candle
|
|
# the trade is open for 26 hours - hence we expect the 8h fee to apply 4 times.
|
|
# Additional counts will happen due each successful entry, which needs to call this, too.
|
|
assert ff_spy.call_count == ff_updates
|
|
|
|
for t in Trade.trades:
|
|
# At least 6 adjustment orders
|
|
assert t.nr_of_successful_entries == entries
|
|
# Funding fees will vary depending on the number of adjustment orders
|
|
# That number is a lot higher with detail data.
|
|
assert t.max_stake_amount == max_stake
|
|
assert pytest.approx(t.funding_fees) == expected_ff
|
|
|
|
|
|
def test_backtest_timedout_entry_orders(default_conf, fee, mocker, testdatadir) -> None:
|
|
# This strategy intentionally places unfillable orders.
|
|
default_conf["strategy"] = "StrategyTestV3CustomEntryPrice"
|
|
default_conf["startup_candle_count"] = 0
|
|
# Cancel unfilled order after 4 minutes on 5m timeframe.
|
|
default_conf["unfilledtimeout"] = {"entry": 4}
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
patch_exchange(mocker)
|
|
default_conf["max_open_trades"] = 1
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
# Testing dataframe contains 11 candles. Expecting 10 timed out orders.
|
|
timerange = TimeRange("date", "date", 1517227800, 1517231100)
|
|
data = history.load_data(
|
|
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
|
|
)
|
|
min_date, max_date = get_timerange(data)
|
|
|
|
result = backtesting.backtest(
|
|
processed=deepcopy(data),
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
|
|
assert result["timedout_entry_orders"] == 10
|
|
|
|
|
|
def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None:
|
|
default_conf["use_exit_signal"] = False
|
|
default_conf["max_open_trades"] = 1
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
patch_exchange(mocker)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
|
|
# Run a backtesting for an exiting 1min timeframe
|
|
timerange = TimeRange.parse_timerange("1510688220-1510700340")
|
|
data = history.load_data(
|
|
datadir=testdatadir, timeframe="1m", pairs=["UNITTEST/BTC"], timerange=timerange
|
|
)
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
results = backtesting.backtest(
|
|
processed=processed,
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
assert not results["results"].empty
|
|
assert len(results["results"]) == 1
|
|
|
|
|
|
def test_backtest_trim_no_data_left(default_conf, fee, mocker, testdatadir) -> None:
|
|
default_conf["use_exit_signal"] = False
|
|
default_conf["max_open_trades"] = 10
|
|
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
patch_exchange(mocker)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
timerange = TimeRange("date", None, 1517227800, 0)
|
|
backtesting.required_startup = 100
|
|
backtesting.timerange = timerange
|
|
data = history.load_data(
|
|
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
|
|
)
|
|
df = data["UNITTEST/BTC"]
|
|
df["date"] = df.loc[:, "date"] - timedelta(days=1)
|
|
# Trimming 100 candles, so after 2nd trimming, no candle is left.
|
|
df = df.iloc[:100]
|
|
data["XRP/USDT"] = df
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
|
|
backtesting.backtest(
|
|
processed=deepcopy(processed),
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
|
|
|
|
def test_processed(default_conf, mocker, testdatadir) -> None:
|
|
patch_exchange(mocker)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
|
|
dict_of_tickerrows = load_data_test("raise", testdatadir)
|
|
dataframes = backtesting.strategy.advise_all_indicators(dict_of_tickerrows)
|
|
dataframe = dataframes["UNITTEST/BTC"]
|
|
cols = dataframe.columns
|
|
# assert the dataframe got some of the indicator columns
|
|
for col in ["close", "high", "low", "open", "date", "ema10", "rsi", "fastd", "plus_di"]:
|
|
assert col in cols
|
|
|
|
|
|
def test_backtest_dataprovider_analyzed_df(default_conf, fee, mocker, testdatadir) -> None:
|
|
default_conf["use_exit_signal"] = False
|
|
default_conf["max_open_trades"] = 10
|
|
default_conf["runmode"] = "backtest"
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=100000)
|
|
patch_exchange(mocker)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
timerange = TimeRange("date", None, 1517227800, 0)
|
|
data = history.load_data(
|
|
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
|
|
)
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
|
|
count = 0
|
|
|
|
def tmp_confirm_entry(pair, current_time, **kwargs):
|
|
nonlocal count
|
|
dp = backtesting.strategy.dp
|
|
df, _ = dp.get_analyzed_dataframe(pair, backtesting.strategy.timeframe)
|
|
current_candle = df.iloc[-1].squeeze()
|
|
assert current_candle["enter_long"] == 1
|
|
|
|
candle_date = timeframe_to_next_date(backtesting.strategy.timeframe, current_candle["date"])
|
|
assert candle_date == current_time
|
|
# These asserts don't properly raise as they are nested,
|
|
# therefore we increment count and assert for that.
|
|
df = dp.get_pair_dataframe(pair, backtesting.strategy.timeframe)
|
|
prior_time = timeframe_to_prev_date(
|
|
backtesting.strategy.timeframe, candle_date - timedelta(seconds=1)
|
|
)
|
|
assert prior_time == df.iloc[-1].squeeze()["date"]
|
|
assert df.iloc[-1].squeeze()["date"] < current_time
|
|
|
|
count += 1
|
|
|
|
backtesting.strategy.confirm_trade_entry = tmp_confirm_entry
|
|
backtesting.backtest(
|
|
processed=deepcopy(processed),
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
assert count == 5
|
|
|
|
|
|
def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None:
|
|
# While this test IS a copy of test_backtest_pricecontours, it's needed to ensure
|
|
# results do not carry-over to the next run, which is not given by using parametrize.
|
|
patch_exchange(mocker)
|
|
default_conf["protections"] = [
|
|
{
|
|
"method": "CooldownPeriod",
|
|
"stop_duration": 3,
|
|
}
|
|
]
|
|
|
|
default_conf["enable_protections"] = True
|
|
default_conf["timeframe"] = "1m"
|
|
default_conf["max_open_trades"] = 1
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
tests = [
|
|
["sine", 9],
|
|
["raise", 10],
|
|
["lower", 0],
|
|
["sine", 9],
|
|
["raise", 10],
|
|
]
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
|
|
# While entry-signals are unrealistic, running backtesting
|
|
# over and over again should not cause different results
|
|
for [contour, numres] in tests:
|
|
# Debug output for random test failure
|
|
print(f"{contour}, {numres}")
|
|
data = load_data_test(contour, testdatadir)
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
assert isinstance(processed, dict)
|
|
results = backtesting.backtest(
|
|
processed=processed,
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
assert len(results["results"]) == numres
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"protections,contour,expected",
|
|
[
|
|
(None, "sine", 35),
|
|
(None, "raise", 19),
|
|
(None, "lower", 0),
|
|
(None, "sine", 35),
|
|
(None, "raise", 19),
|
|
([{"method": "CooldownPeriod", "stop_duration": 3}], "sine", 9),
|
|
([{"method": "CooldownPeriod", "stop_duration": 3}], "raise", 10),
|
|
([{"method": "CooldownPeriod", "stop_duration": 3}], "lower", 0),
|
|
([{"method": "CooldownPeriod", "stop_duration": 3}], "sine", 9),
|
|
([{"method": "CooldownPeriod", "stop_duration": 3}], "raise", 10),
|
|
],
|
|
)
|
|
def test_backtest_pricecontours(
|
|
default_conf, mocker, testdatadir, protections, contour, expected
|
|
) -> None:
|
|
if protections:
|
|
default_conf["protections"] = protections
|
|
default_conf["enable_protections"] = True
|
|
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
# While entry-signals are unrealistic, running backtesting
|
|
# over and over again should not cause different results
|
|
|
|
default_conf["timeframe"] = "1m"
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
|
|
data = load_data_test(contour, testdatadir)
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
assert isinstance(processed, dict)
|
|
backtesting.strategy.max_open_trades = 1
|
|
backtesting.config.update({"max_open_trades": 1})
|
|
results = backtesting.backtest(
|
|
processed=processed,
|
|
start_date=min_date,
|
|
end_date=max_date,
|
|
)
|
|
assert len(results["results"]) == expected
|
|
|
|
|
|
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
|
|
# Override the default buy trend function in our StrategyTest
|
|
def fun(dataframe=None, pair=None):
|
|
buy_value = 1
|
|
sell_value = 1
|
|
return _trend(dataframe, buy_value, sell_value)
|
|
|
|
default_conf["max_open_trades"] = 10
|
|
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.advise_entry = fun # Override
|
|
backtesting.strategy.advise_exit = fun # Override
|
|
result = backtesting.backtest(**backtest_conf)
|
|
assert result["results"].empty
|
|
|
|
|
|
def test_backtest_only_sell(mocker, default_conf, testdatadir):
|
|
# Override the default buy trend function in our StrategyTest
|
|
def fun(dataframe=None, pair=None):
|
|
buy_value = 0
|
|
sell_value = 1
|
|
return _trend(dataframe, buy_value, sell_value)
|
|
|
|
default_conf["max_open_trades"] = 10
|
|
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.advise_entry = fun # Override
|
|
backtesting.strategy.advise_exit = fun # Override
|
|
result = backtesting.backtest(**backtest_conf)
|
|
assert result["results"].empty
|
|
|
|
|
|
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
default_conf["max_open_trades"] = 10
|
|
default_conf["runmode"] = "backtest"
|
|
backtest_conf = _make_backtest_conf(
|
|
mocker, conf=default_conf, pair="UNITTEST/BTC", datadir=testdatadir
|
|
)
|
|
default_conf["timeframe"] = "1m"
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting.required_startup = 0
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.advise_entry = _trend_alternate # Override
|
|
backtesting.strategy.advise_exit = _trend_alternate # Override
|
|
result = backtesting.backtest(**backtest_conf)
|
|
# 200 candles in backtest data
|
|
# won't buy on first (shifted by 1)
|
|
# 100 buys signals
|
|
results = result["results"]
|
|
assert len(results) == 100
|
|
# Cached data should be 200
|
|
analyzed_df = backtesting.dataprovider.get_analyzed_dataframe("UNITTEST/BTC", "1m")[0]
|
|
assert len(analyzed_df) == 200
|
|
# Expect last candle to be 1 below end date (as the last candle is assumed as "incomplete"
|
|
# during backtesting)
|
|
expected_last_candle_date = backtest_conf["end_date"] - timedelta(minutes=1)
|
|
assert analyzed_df.iloc[-1]["date"].to_pydatetime() == expected_last_candle_date
|
|
|
|
# One trade was force-closed at the end
|
|
assert len(results.loc[results["is_open"]]) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("pair", ["ADA/BTC", "LTC/BTC"])
|
|
@pytest.mark.parametrize("tres", [0, 20, 30])
|
|
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
|
|
def _trend_alternate_hold(dataframe=None, metadata=None):
|
|
"""
|
|
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
|
|
"""
|
|
if metadata["pair"] in ("ETH/BTC", "LTC/BTC"):
|
|
multi = 20
|
|
else:
|
|
multi = 18
|
|
dataframe["enter_long"] = np.where(dataframe.index % multi == 0, 1, 0)
|
|
dataframe["exit_long"] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
|
|
dataframe["enter_short"] = 0
|
|
dataframe["exit_short"] = 0
|
|
return dataframe
|
|
|
|
default_conf["runmode"] = "backtest"
|
|
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
|
|
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
patch_exchange(mocker)
|
|
|
|
pairs = ["ADA/BTC", "DASH/BTC", "ETH/BTC", "LTC/BTC", "NXT/BTC"]
|
|
data = history.load_data(datadir=testdatadir, timeframe="5m", pairs=pairs)
|
|
# Only use 500 lines to increase performance
|
|
data = trim_dictlist(data, -500)
|
|
|
|
# Remove data for one pair from the beginning of the data
|
|
if tres > 0:
|
|
data[pair] = data[pair][tres:].reset_index()
|
|
default_conf["timeframe"] = "5m"
|
|
default_conf["max_open_trades"] = 3
|
|
|
|
backtesting = Backtesting(default_conf)
|
|
backtesting._set_strategy(backtesting.strategylist[0])
|
|
backtesting.strategy.advise_entry = _trend_alternate_hold # Override
|
|
backtesting.strategy.advise_exit = _trend_alternate_hold # Override
|
|
|
|
processed = backtesting.strategy.advise_all_indicators(data)
|
|
min_date, max_date = get_timerange(processed)
|
|
|
|
backtest_conf = {
|
|
"processed": deepcopy(processed),
|
|
"start_date": min_date,
|
|
"end_date": max_date,
|
|
}
|
|
|
|
results = backtesting.backtest(**backtest_conf)
|
|
|
|
# Make sure we have parallel trades
|
|
assert len(evaluate_result_multi(results["results"], "5m", 2)) > 0
|
|
# make sure we don't have trades with more than configured max_open_trades
|
|
assert len(evaluate_result_multi(results["results"], "5m", 3)) == 0
|
|
|
|
# Cached data correctly removed amounts
|
|
offset = 1 if tres == 0 else 0
|
|
removed_candles = len(data[pair]) - offset
|
|
assert len(backtesting.dataprovider.get_analyzed_dataframe(pair, "5m")[0]) == removed_candles
|
|
assert (
|
|
len(backtesting.dataprovider.get_analyzed_dataframe("NXT/BTC", "5m")[0])
|
|
== len(data["NXT/BTC"]) - 1
|
|
)
|
|
|
|
backtesting.strategy.max_open_trades = 1
|
|
backtesting.config.update({"max_open_trades": 1})
|
|
backtest_conf = {
|
|
"processed": deepcopy(processed),
|
|
"start_date": min_date,
|
|
"end_date": max_date,
|
|
}
|
|
results = backtesting.backtest(**backtest_conf)
|
|
assert len(evaluate_result_multi(results["results"], "5m", 1)) == 0
|
|
|
|
|
|
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
|
|
patch_exchange(mocker)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
|
|
mocker.patch("freqtrade.optimize.backtesting.generate_backtest_stats")
|
|
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results")
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["UNITTEST/BTC"]),
|
|
)
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
CURRENT_TEST_STRATEGY,
|
|
"--datadir",
|
|
str(testdatadir),
|
|
"--timeframe",
|
|
"1m",
|
|
"--timerange",
|
|
"1510694220-1510700340",
|
|
"--enable-position-stacking",
|
|
"--disable-max-market-positions",
|
|
]
|
|
args = get_args(args)
|
|
start_backtesting(args)
|
|
# check the logs, that will contain the backtest result
|
|
exists = [
|
|
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
|
|
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
|
|
"Parameter --timerange detected: 1510694220-1510700340 ...",
|
|
f"Using data directory: {testdatadir} ...",
|
|
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
"Parameter --enable-position-stacking detected ...",
|
|
]
|
|
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:deprecated")
|
|
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
|
|
default_conf.update(
|
|
{
|
|
"use_exit_signal": True,
|
|
"exit_profit_only": False,
|
|
"exit_profit_offset": 0.0,
|
|
"ignore_roi_if_entry_signal": False,
|
|
}
|
|
)
|
|
patch_exchange(mocker)
|
|
backtestmock = MagicMock(
|
|
return_value={
|
|
"results": pd.DataFrame(columns=BT_DATA_COLUMNS),
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
}
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["UNITTEST/BTC"]),
|
|
)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
|
|
text_table_mock = MagicMock()
|
|
tag_metrics_mock = MagicMock()
|
|
strattable_mock = MagicMock()
|
|
strat_summary = MagicMock()
|
|
|
|
mocker.patch.multiple(
|
|
"freqtrade.optimize.optimize_reports.bt_output",
|
|
text_table_bt_results=text_table_mock,
|
|
text_table_strategy=strattable_mock,
|
|
)
|
|
mocker.patch.multiple(
|
|
"freqtrade.optimize.optimize_reports.optimize_reports",
|
|
generate_pair_metrics=MagicMock(),
|
|
generate_tag_metrics=tag_metrics_mock,
|
|
generate_strategy_comparison=strat_summary,
|
|
generate_daily_stats=MagicMock(),
|
|
)
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--datadir",
|
|
str(testdatadir),
|
|
"--strategy-path",
|
|
str(Path(__file__).parents[1] / "strategy/strats"),
|
|
"--timeframe",
|
|
"1m",
|
|
"--timerange",
|
|
"1510694220-1510700340",
|
|
"--enable-position-stacking",
|
|
"--disable-max-market-positions",
|
|
"--strategy-list",
|
|
CURRENT_TEST_STRATEGY,
|
|
"StrategyTestV2",
|
|
]
|
|
args = get_args(args)
|
|
start_backtesting(args)
|
|
# 2 backtests, 6 tables (entry, exit, mixed - each 2x)
|
|
assert backtestmock.call_count == 2
|
|
assert text_table_mock.call_count == 4
|
|
assert strattable_mock.call_count == 1
|
|
assert tag_metrics_mock.call_count == 6
|
|
assert strat_summary.call_count == 1
|
|
|
|
# check the logs, that will contain the backtest result
|
|
exists = [
|
|
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
|
|
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
|
|
"Parameter --timerange detected: 1510694220-1510700340 ...",
|
|
f"Using data directory: {testdatadir} ...",
|
|
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
"Parameter --enable-position-stacking detected ...",
|
|
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
|
|
"Running backtesting for Strategy StrategyTestV2",
|
|
]
|
|
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
|
|
|
|
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
|
|
default_conf.update(
|
|
{
|
|
"use_exit_signal": True,
|
|
"exit_profit_only": False,
|
|
"exit_profit_offset": 0.0,
|
|
"ignore_roi_if_entry_signal": False,
|
|
}
|
|
)
|
|
patch_exchange(mocker)
|
|
result1 = pd.DataFrame(
|
|
{
|
|
"pair": ["XRP/BTC", "LTC/BTC"],
|
|
"profit_ratio": [0.0, 0.0],
|
|
"profit_abs": [0.0, 0.0],
|
|
"open_date": pd.to_datetime(
|
|
[
|
|
"2018-01-29 18:40:00",
|
|
"2018-01-30 03:30:00",
|
|
],
|
|
utc=True,
|
|
),
|
|
"close_date": pd.to_datetime(
|
|
[
|
|
"2018-01-29 20:45:00",
|
|
"2018-01-30 05:35:00",
|
|
],
|
|
utc=True,
|
|
),
|
|
"trade_duration": [235, 40],
|
|
"is_open": [False, False],
|
|
"stake_amount": [0.01, 0.01],
|
|
"open_rate": [0.104445, 0.10302485],
|
|
"close_rate": [0.104969, 0.103541],
|
|
"is_short": [False, False],
|
|
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value],
|
|
}
|
|
)
|
|
result2 = pd.DataFrame(
|
|
{
|
|
"pair": ["XRP/BTC", "LTC/BTC", "ETH/BTC"],
|
|
"profit_ratio": [0.03, 0.01, 0.1],
|
|
"profit_abs": [0.01, 0.02, 0.2],
|
|
"open_date": pd.to_datetime(
|
|
["2018-01-29 18:40:00", "2018-01-30 03:30:00", "2018-01-30 05:30:00"], utc=True
|
|
),
|
|
"close_date": pd.to_datetime(
|
|
["2018-01-29 20:45:00", "2018-01-30 05:35:00", "2018-01-30 08:30:00"], utc=True
|
|
),
|
|
"trade_duration": [47, 40, 20],
|
|
"is_open": [False, False, False],
|
|
"stake_amount": [0.01, 0.01, 0.01],
|
|
"open_rate": [0.104445, 0.10302485, 0.122541],
|
|
"close_rate": [0.104969, 0.103541, 0.123541],
|
|
"is_short": [False, False, False],
|
|
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value, ExitType.STOP_LOSS.value],
|
|
}
|
|
)
|
|
backtestmock = MagicMock(
|
|
side_effect=[
|
|
{
|
|
"results": result1,
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
},
|
|
{
|
|
"results": result2,
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
},
|
|
]
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["UNITTEST/BTC"]),
|
|
)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
|
|
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--datadir",
|
|
str(testdatadir),
|
|
"--strategy-path",
|
|
str(Path(__file__).parents[1] / "strategy/strats"),
|
|
"--timeframe",
|
|
"1m",
|
|
"--timerange",
|
|
"1510694220-1510700340",
|
|
"--enable-position-stacking",
|
|
"--disable-max-market-positions",
|
|
"--breakdown",
|
|
"day",
|
|
"--strategy-list",
|
|
CURRENT_TEST_STRATEGY,
|
|
"StrategyTestV2",
|
|
]
|
|
args = get_args(args)
|
|
start_backtesting(args)
|
|
|
|
# check the logs, that will contain the backtest result
|
|
exists = [
|
|
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
|
|
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
|
|
"Parameter --timerange detected: 1510694220-1510700340 ...",
|
|
f"Using data directory: {testdatadir} ...",
|
|
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
"Parameter --enable-position-stacking detected ...",
|
|
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
|
|
"Running backtesting for Strategy StrategyTestV2",
|
|
]
|
|
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
|
|
captured = capsys.readouterr()
|
|
assert "BACKTESTING REPORT" in captured.out
|
|
assert "EXIT REASON STATS" in captured.out
|
|
assert "DAY BREAKDOWN" in captured.out
|
|
assert "LEFT OPEN TRADES REPORT" in captured.out
|
|
assert "2017-11-14 21:17:00 -> 2017-11-14 22:59:00 | Max open trades : 1" in captured.out
|
|
assert "STRATEGY SUMMARY" in captured.out
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:deprecated")
|
|
def test_backtest_start_futures_noliq(default_conf_usdt, mocker, caplog, testdatadir, capsys):
|
|
# Tests detail-data loading
|
|
default_conf_usdt.update(
|
|
{
|
|
"trading_mode": "futures",
|
|
"margin_mode": "isolated",
|
|
"use_exit_signal": True,
|
|
"exit_profit_only": False,
|
|
"exit_profit_offset": 0.0,
|
|
"ignore_roi_if_entry_signal": False,
|
|
"strategy": CURRENT_TEST_STRATEGY,
|
|
}
|
|
)
|
|
patch_exchange(mocker)
|
|
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["HULUMULU/USDT", "XRP/USDT:USDT"]),
|
|
)
|
|
# mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
|
|
|
|
patched_configuration_load_config_file(mocker, default_conf_usdt)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--datadir",
|
|
str(testdatadir),
|
|
"--strategy-path",
|
|
str(Path(__file__).parents[1] / "strategy/strats"),
|
|
"--timeframe",
|
|
"1h",
|
|
]
|
|
args = get_args(args)
|
|
with pytest.raises(OperationalException, match=r"Pairs .* got no leverage tiers available\."):
|
|
start_backtesting(args)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:deprecated")
|
|
def test_backtest_start_nomock_futures(default_conf_usdt, mocker, caplog, testdatadir, capsys):
|
|
# Tests detail-data loading
|
|
default_conf_usdt.update(
|
|
{
|
|
"trading_mode": "futures",
|
|
"margin_mode": "isolated",
|
|
"use_exit_signal": True,
|
|
"exit_profit_only": False,
|
|
"exit_profit_offset": 0.0,
|
|
"ignore_roi_if_entry_signal": False,
|
|
"strategy": CURRENT_TEST_STRATEGY,
|
|
}
|
|
)
|
|
patch_exchange(mocker)
|
|
result1 = pd.DataFrame(
|
|
{
|
|
"pair": ["XRP/USDT:USDT", "XRP/USDT:USDT"],
|
|
"profit_ratio": [0.0, 0.0],
|
|
"profit_abs": [0.0, 0.0],
|
|
"open_date": pd.to_datetime(
|
|
[
|
|
"2021-11-18 18:00:00",
|
|
"2021-11-18 03:00:00",
|
|
],
|
|
utc=True,
|
|
),
|
|
"close_date": pd.to_datetime(
|
|
[
|
|
"2021-11-18 20:00:00",
|
|
"2021-11-18 05:00:00",
|
|
],
|
|
utc=True,
|
|
),
|
|
"trade_duration": [235, 40],
|
|
"is_open": [False, False],
|
|
"is_short": [False, False],
|
|
"stake_amount": [0.01, 0.01],
|
|
"open_rate": [0.104445, 0.10302485],
|
|
"close_rate": [0.104969, 0.103541],
|
|
"exit_reason": [ExitType.ROI, ExitType.ROI],
|
|
}
|
|
)
|
|
result2 = pd.DataFrame(
|
|
{
|
|
"pair": ["XRP/USDT:USDT", "XRP/USDT:USDT", "XRP/USDT:USDT"],
|
|
"profit_ratio": [0.03, 0.01, 0.1],
|
|
"profit_abs": [0.01, 0.02, 0.2],
|
|
"open_date": pd.to_datetime(
|
|
["2021-11-19 18:00:00", "2021-11-19 03:00:00", "2021-11-19 05:00:00"], utc=True
|
|
),
|
|
"close_date": pd.to_datetime(
|
|
["2021-11-19 20:00:00", "2021-11-19 05:00:00", "2021-11-19 08:00:00"], utc=True
|
|
),
|
|
"trade_duration": [47, 40, 20],
|
|
"is_open": [False, False, False],
|
|
"is_short": [False, False, False],
|
|
"stake_amount": [0.01, 0.01, 0.01],
|
|
"open_rate": [0.104445, 0.10302485, 0.122541],
|
|
"close_rate": [0.104969, 0.103541, 0.123541],
|
|
"exit_reason": [ExitType.ROI, ExitType.ROI, ExitType.STOP_LOSS],
|
|
}
|
|
)
|
|
backtestmock = MagicMock(
|
|
side_effect=[
|
|
{
|
|
"results": result1,
|
|
"config": default_conf_usdt,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
},
|
|
{
|
|
"results": result2,
|
|
"config": default_conf_usdt,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
},
|
|
]
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["XRP/USDT:USDT"]),
|
|
)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
|
|
|
|
patched_configuration_load_config_file(mocker, default_conf_usdt)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--datadir",
|
|
str(testdatadir),
|
|
"--strategy-path",
|
|
str(Path(__file__).parents[1] / "strategy/strats"),
|
|
"--timeframe",
|
|
"1h",
|
|
]
|
|
args = get_args(args)
|
|
start_backtesting(args)
|
|
|
|
# check the logs, that will contain the backtest result
|
|
exists = [
|
|
"Parameter -i/--timeframe detected ... Using timeframe: 1h ...",
|
|
f"Using data directory: {testdatadir} ...",
|
|
"Loading data from 2021-11-17 01:00:00 up to 2021-11-21 04:00:00 (4 days).",
|
|
"Backtesting with data from 2021-11-17 21:00:00 up to 2021-11-21 04:00:00 (3 days).",
|
|
"XRP/USDT:USDT, funding_rate, 8h, data starts at 2021-11-18 00:00:00",
|
|
"XRP/USDT:USDT, mark, 8h, data starts at 2021-11-18 00:00:00",
|
|
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
|
|
]
|
|
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
|
|
captured = capsys.readouterr()
|
|
assert "BACKTESTING REPORT" in captured.out
|
|
assert "EXIT REASON STATS" in captured.out
|
|
assert "LEFT OPEN TRADES REPORT" in captured.out
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:deprecated")
|
|
def test_backtest_start_multi_strat_nomock_detail(
|
|
default_conf, mocker, caplog, testdatadir, capsys
|
|
):
|
|
# Tests detail-data loading
|
|
default_conf.update(
|
|
{
|
|
"use_exit_signal": True,
|
|
"exit_profit_only": False,
|
|
"exit_profit_offset": 0.0,
|
|
"ignore_roi_if_entry_signal": False,
|
|
}
|
|
)
|
|
patch_exchange(mocker)
|
|
result1 = pd.DataFrame(
|
|
{
|
|
"pair": ["XRP/BTC", "LTC/BTC"],
|
|
"profit_ratio": [0.0, 0.0],
|
|
"profit_abs": [0.0, 0.0],
|
|
"open_date": pd.to_datetime(
|
|
[
|
|
"2018-01-29 18:40:00",
|
|
"2018-01-30 03:30:00",
|
|
],
|
|
utc=True,
|
|
),
|
|
"close_date": pd.to_datetime(
|
|
[
|
|
"2018-01-29 20:45:00",
|
|
"2018-01-30 05:35:00",
|
|
],
|
|
utc=True,
|
|
),
|
|
"trade_duration": [235, 40],
|
|
"is_open": [False, False],
|
|
"is_short": [False, False],
|
|
"stake_amount": [0.01, 0.01],
|
|
"open_rate": [0.104445, 0.10302485],
|
|
"close_rate": [0.104969, 0.103541],
|
|
"exit_reason": [ExitType.ROI, ExitType.ROI],
|
|
}
|
|
)
|
|
result2 = pd.DataFrame(
|
|
{
|
|
"pair": ["XRP/BTC", "LTC/BTC", "ETH/BTC"],
|
|
"profit_ratio": [0.03, 0.01, 0.1],
|
|
"profit_abs": [0.01, 0.02, 0.2],
|
|
"open_date": pd.to_datetime(
|
|
["2018-01-29 18:40:00", "2018-01-30 03:30:00", "2018-01-30 05:30:00"], utc=True
|
|
),
|
|
"close_date": pd.to_datetime(
|
|
["2018-01-29 20:45:00", "2018-01-30 05:35:00", "2018-01-30 08:30:00"], utc=True
|
|
),
|
|
"trade_duration": [47, 40, 20],
|
|
"is_open": [False, False, False],
|
|
"is_short": [False, False, False],
|
|
"stake_amount": [0.01, 0.01, 0.01],
|
|
"open_rate": [0.104445, 0.10302485, 0.122541],
|
|
"close_rate": [0.104969, 0.103541, 0.123541],
|
|
"exit_reason": [ExitType.ROI, ExitType.ROI, ExitType.STOP_LOSS],
|
|
}
|
|
)
|
|
backtestmock = MagicMock(
|
|
side_effect=[
|
|
{
|
|
"results": result1,
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
},
|
|
{
|
|
"results": result2,
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
},
|
|
]
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["XRP/ETH"]),
|
|
)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
|
|
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--datadir",
|
|
str(testdatadir),
|
|
"--strategy-path",
|
|
str(Path(__file__).parents[1] / "strategy/strats"),
|
|
"--timeframe",
|
|
"5m",
|
|
"--timeframe-detail",
|
|
"1m",
|
|
"--strategy-list",
|
|
CURRENT_TEST_STRATEGY,
|
|
]
|
|
args = get_args(args)
|
|
start_backtesting(args)
|
|
|
|
# check the logs, that will contain the backtest result
|
|
exists = [
|
|
"Parameter -i/--timeframe detected ... Using timeframe: 5m ...",
|
|
"Parameter --timeframe-detail detected, using 1m for intra-candle backtesting ...",
|
|
f"Using data directory: {testdatadir} ...",
|
|
"Loading data from 2019-10-11 00:00:00 up to 2019-10-13 11:15:00 (2 days).",
|
|
"Backtesting with data from 2019-10-11 01:40:00 up to 2019-10-13 11:15:00 (2 days).",
|
|
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
|
|
]
|
|
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
|
|
captured = capsys.readouterr()
|
|
assert "BACKTESTING REPORT" in captured.out
|
|
assert "EXIT REASON STATS" in captured.out
|
|
assert "LEFT OPEN TRADES REPORT" in captured.out
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:deprecated")
|
|
@pytest.mark.parametrize("run_id", ["2", "changed"])
|
|
@pytest.mark.parametrize("start_delta", [{"days": 0}, {"days": 1}, {"weeks": 1}, {"weeks": 4}])
|
|
@pytest.mark.parametrize("cache", constants.BACKTEST_CACHE_AGE)
|
|
def test_backtest_start_multi_strat_caching(
|
|
default_conf, mocker, caplog, testdatadir, run_id, start_delta, cache
|
|
):
|
|
default_conf.update(
|
|
{
|
|
"use_exit_signal": True,
|
|
"exit_profit_only": False,
|
|
"exit_profit_offset": 0.0,
|
|
"ignore_roi_if_entry_signal": False,
|
|
}
|
|
)
|
|
patch_exchange(mocker)
|
|
backtestmock = MagicMock(
|
|
return_value={
|
|
"results": pd.DataFrame(columns=BT_DATA_COLUMNS),
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
}
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
|
|
PropertyMock(return_value=["UNITTEST/BTC"]),
|
|
)
|
|
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
|
|
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results", MagicMock())
|
|
|
|
now = min_backtest_date = datetime.now(tz=timezone.utc)
|
|
start_time = now - timedelta(**start_delta) + timedelta(hours=1)
|
|
if cache == "none":
|
|
min_backtest_date = now + timedelta(days=1)
|
|
elif cache == "day":
|
|
min_backtest_date = now - timedelta(days=1)
|
|
elif cache == "week":
|
|
min_backtest_date = now - timedelta(weeks=1)
|
|
elif cache == "month":
|
|
min_backtest_date = now - timedelta(weeks=4)
|
|
load_backtest_metadata = MagicMock(
|
|
return_value={
|
|
"StrategyTestV2": {"run_id": "1", "backtest_start_time": now.timestamp()},
|
|
"StrategyTestV3": {"run_id": run_id, "backtest_start_time": start_time.timestamp()},
|
|
}
|
|
)
|
|
load_backtest_stats = MagicMock(
|
|
side_effect=[
|
|
{
|
|
"metadata": {"StrategyTestV2": {"run_id": "1"}},
|
|
"strategy": {"StrategyTestV2": {}},
|
|
"strategy_comparison": [{"key": "StrategyTestV2"}],
|
|
},
|
|
{
|
|
"metadata": {"StrategyTestV3": {"run_id": "2"}},
|
|
"strategy": {"StrategyTestV3": {}},
|
|
"strategy_comparison": [{"key": "StrategyTestV3"}],
|
|
},
|
|
]
|
|
)
|
|
mocker.patch(
|
|
"pathlib.Path.glob",
|
|
return_value=[
|
|
Path(datetime.strftime(datetime.now(), "backtest-result-%Y-%m-%d_%H-%M-%S.json"))
|
|
],
|
|
)
|
|
mocker.patch.multiple(
|
|
"freqtrade.data.btanalysis",
|
|
load_backtest_metadata=load_backtest_metadata,
|
|
load_backtest_stats=load_backtest_stats,
|
|
)
|
|
mocker.patch("freqtrade.optimize.backtesting.get_strategy_run_id", side_effect=["1", "2", "2"])
|
|
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"backtesting",
|
|
"--config",
|
|
"config.json",
|
|
"--datadir",
|
|
str(testdatadir),
|
|
"--strategy-path",
|
|
str(Path(__file__).parents[1] / "strategy/strats"),
|
|
"--timeframe",
|
|
"1m",
|
|
"--timerange",
|
|
"1510694220-1510700340",
|
|
"--enable-position-stacking",
|
|
"--disable-max-market-positions",
|
|
"--cache",
|
|
cache,
|
|
"--strategy-list",
|
|
"StrategyTestV2",
|
|
"StrategyTestV3",
|
|
]
|
|
args = get_args(args)
|
|
start_backtesting(args)
|
|
|
|
# check the logs, that will contain the backtest result
|
|
exists = [
|
|
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
|
|
"Parameter --timerange detected: 1510694220-1510700340 ...",
|
|
f"Using data directory: {testdatadir} ...",
|
|
"Loading data from 2017-11-14 20:57:00 " "up to 2017-11-14 22:59:00 (0 days).",
|
|
"Parameter --enable-position-stacking detected ...",
|
|
]
|
|
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
|
|
if cache == "none":
|
|
assert backtestmock.call_count == 2
|
|
exists = [
|
|
"Running backtesting for Strategy StrategyTestV2",
|
|
"Running backtesting for Strategy StrategyTestV3",
|
|
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
|
|
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
]
|
|
elif run_id == "2" and min_backtest_date < start_time:
|
|
assert backtestmock.call_count == 0
|
|
exists = [
|
|
"Reusing result of previous backtest for StrategyTestV2",
|
|
"Reusing result of previous backtest for StrategyTestV3",
|
|
]
|
|
else:
|
|
exists = [
|
|
"Reusing result of previous backtest for StrategyTestV2",
|
|
"Running backtesting for Strategy StrategyTestV3",
|
|
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
|
|
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
|
|
]
|
|
assert backtestmock.call_count == 1
|
|
|
|
for line in exists:
|
|
assert log_has(line, caplog)
|
|
|
|
|
|
def test_get_strategy_run_id(default_conf_usdt):
|
|
default_conf_usdt.update({"strategy": "StrategyTestV2", "max_open_trades": float("inf")})
|
|
strategy = StrategyResolver.load_strategy(default_conf_usdt)
|
|
x = get_strategy_run_id(strategy)
|
|
assert isinstance(x, str)
|
|
|
|
|
|
def test_get_backtest_metadata_filename():
|
|
# Test with a file path
|
|
filename = Path("backtest_results.json")
|
|
expected = Path("backtest_results.meta.json")
|
|
assert get_backtest_metadata_filename(filename) == expected
|
|
|
|
# Test with a file path with multiple dots in the name
|
|
filename = Path("/path/to/backtest.results.json")
|
|
expected = Path("/path/to/backtest.results.meta.json")
|
|
assert get_backtest_metadata_filename(filename) == expected
|
|
|
|
# Test with a file path with no parent directory
|
|
filename = Path("backtest_results.json")
|
|
expected = Path("backtest_results.meta.json")
|
|
assert get_backtest_metadata_filename(filename) == expected
|
|
|
|
# Test with a string file path
|
|
filename = "/path/to/backtest_results.json"
|
|
expected = Path("/path/to/backtest_results.meta.json")
|
|
assert get_backtest_metadata_filename(filename) == expected
|
|
|
|
# Test with a string file path with no extension
|
|
filename = "/path/to/backtest_results"
|
|
expected = Path("/path/to/backtest_results.meta")
|
|
assert get_backtest_metadata_filename(filename) == expected
|
|
|
|
# Test with a string file path with multiple dots in the name
|
|
filename = "/path/to/backtest.results.json"
|
|
expected = Path("/path/to/backtest.results.meta.json")
|
|
assert get_backtest_metadata_filename(filename) == expected
|
|
|
|
# Test with a string file path with no parent directory
|
|
filename = "backtest_results.json"
|
|
expected = Path("backtest_results.meta.json")
|
|
assert get_backtest_metadata_filename(filename) == expected
|