mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-13 03:33:55 +00:00
2.9 KiB
2.9 KiB
Analyzing bot data
You can analyze the results of backtests and trading history easily using Jupyter notebooks. A sample notebook is located at user_data/notebooks/analysis_example.ipynb
. For usage instructions, see jupyter.org.
Strategy debugging example
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
Import requirements and define variables used in the script
# Imports
from pathlib import Path
import os
from freqtrade.data.history import load_pair_history
from freqtrade.resolvers import StrategyResolver
from freqtrade.data.btanalysis import load_backtest_data
from freqtrade.data.btanalysis import load_trades_from_db
# Define some constants
ticker_interval = "1m"
# Name of the strategy class
strategy_name = 'NewStrategy'
# Path to user data
user_data_dir = 'user_data'
# Location of the strategy
strategy_location = os.path.join(user_data_dir, 'strategies')
# Location of the data
data_location = os.path.join(user_data_dir, 'data', 'binance')
# Pair to analyze
# Only use one pair here
pair = "BTC_USDT"
Load exchange data
# Load data using values set above
bt_data = load_pair_history(datadir=Path(data_location),
ticker_interval=ticker_interval,
pair=pair)
# Confirm success
print("Loaded " + str(len(bt_data)) + f" rows of data for {pair} from {data_location}")
Load and run strategy
- Rerun each time the strategy file is changed
- Display the trade details. Note that using
data.head()
would also work, however most indicators have some "startup" data at the top of the dataframe.
Some possible problems:
- Columns with NaN values at the end of the dataframe
- Columns used in
crossed*()
functions with completely different units
# Load strategy using values set above
strategy = StrategyResolver({'strategy': strategy_name,
'user_data_dir': user_data_dir,
'strategy_path': strategy_location}).strategy
# Run strategy (just like in backtesting)
df = strategy.analyze_ticker(bt_data, {'pair': pair})
# Report results
print(f"Generated {df['buy'].sum()} buy signals")
data = df.set_index('date', drop=True)
data.tail()
Load backtest results into a pandas dataframe
# Load backtest results
df = load_backtest_data("user_data/backtest_data/backtest-result.json")
# Show value-counts per pair
df.groupby("pair")["sell_reason"].value_counts()
Load live trading results into a pandas dataframe
# Fetch trades from database
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
# Display results
df.groupby("pair")["sell_reason"].value_counts()
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.