mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 12:13:57 +00:00
314 lines
12 KiB
Python
314 lines
12 KiB
Python
import logging
|
|
import math
|
|
from datetime import datetime
|
|
from typing import Dict, Tuple
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
|
|
"""
|
|
Calculate market change based on "column".
|
|
Calculation is done by taking the first non-null and the last non-null element of each column
|
|
and calculating the pctchange as "(last - first) / first".
|
|
Then the results per pair are combined as mean.
|
|
|
|
:param data: Dict of Dataframes, dict key should be pair.
|
|
:param column: Column in the original dataframes to use
|
|
:return:
|
|
"""
|
|
tmp_means = []
|
|
for pair, df in data.items():
|
|
start = df[column].dropna().iloc[0]
|
|
end = df[column].dropna().iloc[-1]
|
|
tmp_means.append((end - start) / start)
|
|
|
|
return float(np.mean(tmp_means))
|
|
|
|
|
|
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
|
|
column: str = "close") -> pd.DataFrame:
|
|
"""
|
|
Combine multiple dataframes "column"
|
|
:param data: Dict of Dataframes, dict key should be pair.
|
|
:param column: Column in the original dataframes to use
|
|
:return: DataFrame with the column renamed to the dict key, and a column
|
|
named mean, containing the mean of all pairs.
|
|
:raise: ValueError if no data is provided.
|
|
"""
|
|
df_comb = pd.concat([data[pair].set_index('date').rename(
|
|
{column: pair}, axis=1)[pair] for pair in data], axis=1)
|
|
|
|
df_comb['mean'] = df_comb.mean(axis=1)
|
|
|
|
return df_comb
|
|
|
|
|
|
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
|
timeframe: str) -> pd.DataFrame:
|
|
"""
|
|
Adds a column `col_name` with the cumulative profit for the given trades array.
|
|
:param df: DataFrame with date index
|
|
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
|
:param col_name: Column name that will be assigned the results
|
|
:param timeframe: Timeframe used during the operations
|
|
:return: Returns df with one additional column, col_name, containing the cumulative profit.
|
|
:raise: ValueError if trade-dataframe was found empty.
|
|
"""
|
|
if len(trades) == 0:
|
|
raise ValueError("Trade dataframe empty.")
|
|
from freqtrade.exchange import timeframe_to_resample_freq
|
|
timeframe_freq = timeframe_to_resample_freq(timeframe)
|
|
# Resample to timeframe to make sure trades match candles
|
|
_trades_sum = trades.resample(timeframe_freq, on='close_date'
|
|
)[['profit_abs']].sum()
|
|
df.loc[:, col_name] = _trades_sum['profit_abs'].cumsum()
|
|
# Set first value to 0
|
|
df.loc[df.iloc[0].name, col_name] = 0
|
|
# FFill to get continuous
|
|
df[col_name] = df[col_name].ffill()
|
|
return df
|
|
|
|
|
|
def _calc_drawdown_series(profit_results: pd.DataFrame, *, date_col: str, value_col: str,
|
|
starting_balance: float) -> pd.DataFrame:
|
|
max_drawdown_df = pd.DataFrame()
|
|
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
|
|
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
|
|
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
|
|
max_drawdown_df['date'] = profit_results.loc[:, date_col]
|
|
if starting_balance:
|
|
cumulative_balance = starting_balance + max_drawdown_df['cumulative']
|
|
max_balance = starting_balance + max_drawdown_df['high_value']
|
|
max_drawdown_df['drawdown_relative'] = ((max_balance - cumulative_balance) / max_balance)
|
|
else:
|
|
# NOTE: This is not completely accurate,
|
|
# but might good enough if starting_balance is not available
|
|
max_drawdown_df['drawdown_relative'] = (
|
|
(max_drawdown_df['high_value'] - max_drawdown_df['cumulative'])
|
|
/ max_drawdown_df['high_value'])
|
|
return max_drawdown_df
|
|
|
|
|
|
def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
|
value_col: str = 'profit_ratio', starting_balance: float = 0.0
|
|
):
|
|
"""
|
|
Calculate max drawdown and the corresponding close dates
|
|
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
|
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
|
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
|
|
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
|
|
high and low time and high and low value.
|
|
:raise: ValueError if trade-dataframe was found empty.
|
|
"""
|
|
if len(trades) == 0:
|
|
raise ValueError("Trade dataframe empty.")
|
|
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
|
max_drawdown_df = _calc_drawdown_series(
|
|
profit_results,
|
|
date_col=date_col,
|
|
value_col=value_col,
|
|
starting_balance=starting_balance)
|
|
|
|
return max_drawdown_df
|
|
|
|
|
|
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
|
value_col: str = 'profit_abs', starting_balance: float = 0,
|
|
relative: bool = False
|
|
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
|
|
"""
|
|
Calculate max drawdown and the corresponding close dates
|
|
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
|
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
|
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
|
|
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
|
|
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
|
|
with absolute max drawdown, high and low time and high and low value,
|
|
and the relative account drawdown
|
|
:raise: ValueError if trade-dataframe was found empty.
|
|
"""
|
|
if len(trades) == 0:
|
|
raise ValueError("Trade dataframe empty.")
|
|
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
|
max_drawdown_df = _calc_drawdown_series(
|
|
profit_results,
|
|
date_col=date_col,
|
|
value_col=value_col,
|
|
starting_balance=starting_balance
|
|
)
|
|
|
|
idxmin = max_drawdown_df['drawdown_relative'].idxmax() if relative \
|
|
else max_drawdown_df['drawdown'].idxmin()
|
|
if idxmin == 0:
|
|
raise ValueError("No losing trade, therefore no drawdown.")
|
|
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
|
|
low_date = profit_results.loc[idxmin, date_col]
|
|
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
|
|
['high_value'].idxmax(), 'cumulative']
|
|
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
|
|
max_drawdown_rel = max_drawdown_df.loc[idxmin, 'drawdown_relative']
|
|
|
|
return (
|
|
abs(max_drawdown_df.loc[idxmin, 'drawdown']),
|
|
high_date,
|
|
low_date,
|
|
high_val,
|
|
low_val,
|
|
max_drawdown_rel
|
|
)
|
|
|
|
|
|
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
|
|
"""
|
|
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
|
|
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
|
:param starting_balance: Add starting balance to results, to show the wallets high / low points
|
|
:return: Tuple (float, float) with cumsum of profit_abs
|
|
:raise: ValueError if trade-dataframe was found empty.
|
|
"""
|
|
if len(trades) == 0:
|
|
raise ValueError("Trade dataframe empty.")
|
|
|
|
csum_df = pd.DataFrame()
|
|
csum_df['sum'] = trades['profit_abs'].cumsum()
|
|
csum_min = csum_df['sum'].min() + starting_balance
|
|
csum_max = csum_df['sum'].max() + starting_balance
|
|
|
|
return csum_min, csum_max
|
|
|
|
|
|
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
|
|
"""
|
|
Calculate CAGR
|
|
:param days_passed: Days passed between start and ending balance
|
|
:param starting_balance: Starting balance
|
|
:param final_balance: Final balance to calculate CAGR against
|
|
:return: CAGR
|
|
"""
|
|
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
|
|
|
|
|
|
def calculate_expectancy(trades: pd.DataFrame) -> Tuple[float, float]:
|
|
"""
|
|
Calculate expectancy
|
|
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
|
:return: expectancy, expectancy_ratio
|
|
"""
|
|
|
|
expectancy = 0
|
|
expectancy_ratio = 100
|
|
|
|
if len(trades) > 0:
|
|
winning_trades = trades.loc[trades['profit_abs'] > 0]
|
|
losing_trades = trades.loc[trades['profit_abs'] < 0]
|
|
profit_sum = winning_trades['profit_abs'].sum()
|
|
loss_sum = abs(losing_trades['profit_abs'].sum())
|
|
nb_win_trades = len(winning_trades)
|
|
nb_loss_trades = len(losing_trades)
|
|
|
|
average_win = (profit_sum / nb_win_trades) if nb_win_trades > 0 else 0
|
|
average_loss = (loss_sum / nb_loss_trades) if nb_loss_trades > 0 else 0
|
|
winrate = (nb_win_trades / len(trades))
|
|
loserate = (nb_loss_trades / len(trades))
|
|
|
|
expectancy = (winrate * average_win) - (loserate * average_loss)
|
|
if (average_loss > 0):
|
|
risk_reward_ratio = average_win / average_loss
|
|
expectancy_ratio = ((1 + risk_reward_ratio) * winrate) - 1
|
|
|
|
return expectancy, expectancy_ratio
|
|
|
|
|
|
def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
|
starting_balance: float) -> float:
|
|
"""
|
|
Calculate sortino
|
|
:param trades: DataFrame containing trades (requires columns profit_abs)
|
|
:return: sortino
|
|
"""
|
|
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
|
return 0
|
|
|
|
total_profit = trades['profit_abs'] / starting_balance
|
|
days_period = max(1, (max_date - min_date).days)
|
|
|
|
expected_returns_mean = total_profit.sum() / days_period
|
|
|
|
down_stdev = np.std(trades.loc[trades['profit_abs'] < 0, 'profit_abs'] / starting_balance)
|
|
|
|
if down_stdev != 0 and not np.isnan(down_stdev):
|
|
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
|
else:
|
|
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
|
sortino_ratio = -100
|
|
|
|
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
|
return sortino_ratio
|
|
|
|
|
|
def calculate_sharpe(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
|
starting_balance: float) -> float:
|
|
"""
|
|
Calculate sharpe
|
|
:param trades: DataFrame containing trades (requires column profit_abs)
|
|
:return: sharpe
|
|
"""
|
|
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
|
return 0
|
|
|
|
total_profit = trades['profit_abs'] / starting_balance
|
|
days_period = max(1, (max_date - min_date).days)
|
|
|
|
expected_returns_mean = total_profit.sum() / days_period
|
|
up_stdev = np.std(total_profit)
|
|
|
|
if up_stdev != 0:
|
|
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
|
|
else:
|
|
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
|
sharp_ratio = -100
|
|
|
|
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
|
return sharp_ratio
|
|
|
|
|
|
def calculate_calmar(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
|
starting_balance: float) -> float:
|
|
"""
|
|
Calculate calmar
|
|
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
|
:return: calmar
|
|
"""
|
|
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
|
|
return 0
|
|
|
|
total_profit = trades['profit_abs'].sum() / starting_balance
|
|
days_period = max(1, (max_date - min_date).days)
|
|
|
|
# adding slippage of 0.1% per trade
|
|
# total_profit = total_profit - 0.0005
|
|
expected_returns_mean = total_profit / days_period * 100
|
|
|
|
# calculate max drawdown
|
|
try:
|
|
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
|
|
trades, value_col="profit_abs", starting_balance=starting_balance
|
|
)
|
|
except ValueError:
|
|
max_drawdown = 0
|
|
|
|
if max_drawdown != 0:
|
|
calmar_ratio = expected_returns_mean / max_drawdown * math.sqrt(365)
|
|
else:
|
|
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
|
calmar_ratio = -100
|
|
|
|
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
|
return calmar_ratio
|