freqtrade_origin/freqtrade/freqai/data_kitchen.py
2022-05-23 00:10:36 +02:00

934 lines
40 KiB
Python

import copy
import datetime
import json
import logging
import pickle as pk
import shutil
from pathlib import Path
from typing import Any, Dict, List, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
from joblib import dump, load # , Parallel, delayed # used for auto distribution assignment
from pandas import DataFrame
from sklearn import linear_model
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.model_selection import train_test_split
from freqtrade.configuration import TimeRange
from freqtrade.data.history import load_pair_history
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
from freqtrade.resolvers import ExchangeResolver
from freqtrade.strategy.interface import IStrategy
# import scipy as spy # used for auto distribution assignment
SECONDS_IN_DAY = 86400
logger = logging.getLogger(__name__)
class FreqaiDataKitchen:
"""
Class designed to handle all the data for the IFreqaiModel class model.
Functionalities include holding, saving, loading, and analyzing the data.
author: Robert Caulk, rob.caulk@gmail.com
"""
def __init__(self, config: Dict[str, Any], dataframe: DataFrame, live: bool = False):
self.full_dataframe = dataframe
self.data: Dict[Any, Any] = {}
self.data_dictionary: Dict[Any, Any] = {}
self.config = config
self.freqai_config = config["freqai"]
self.predictions: npt.ArrayLike = np.array([])
self.do_predict: npt.ArrayLike = np.array([])
self.target_mean: npt.ArrayLike = np.array([])
self.target_std: npt.ArrayLike = np.array([])
self.full_predictions: npt.ArrayLike = np.array([])
self.full_do_predict: npt.ArrayLike = np.array([])
self.full_target_mean: npt.ArrayLike = np.array([])
self.full_target_std: npt.ArrayLike = np.array([])
self.model_path = Path()
self.model_filename: str = ""
self.model_dictionary: Dict[Any, Any] = {}
self.live = live
self.svm_model: linear_model.SGDOneClassSVM = None
if not self.live:
self.full_timerange = self.create_fulltimerange(self.config["timerange"],
self.freqai_config["train_period"]
)
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
self.full_timerange,
config["freqai"]["train_period"],
config["freqai"]["backtest_period"],
)
def set_paths(self) -> None:
self.full_path = Path(self.config['user_data_dir'] /
"models" /
str(self.freqai_config['live_full_backtestrange'] +
self.freqai_config['identifier']))
self.model_path = Path(self.full_path / str("sub-train" + "-" +
str(self.freqai_config['live_trained_timerange'])))
return
def save_data(self, model: Any) -> None:
"""
Saves all data associated with a model for a single sub-train time range
:params:
:model: User trained model which can be reused for inferencing to generate
predictions
"""
if not self.model_path.is_dir():
self.model_path.mkdir(parents=True, exist_ok=True)
save_path = Path(self.model_path)
# Save the trained model
dump(model, save_path / str(self.model_filename + "_model.joblib"))
if self.svm_model is not None:
dump(self.svm_model, save_path / str(self.model_filename + "_svm_model.joblib"))
self.data["model_path"] = str(self.model_path)
self.data["model_filename"] = str(self.model_filename)
self.data["training_features_list"] = list(self.data_dictionary["train_features"].columns)
# store the metadata
with open(save_path / str(self.model_filename + "_metadata.json"), "w") as fp:
json.dump(self.data, fp, default=self.np_encoder)
# save the train data to file so we can check preds for area of applicability later
self.data_dictionary["train_features"].to_pickle(
save_path / str(self.model_filename + "_trained_df.pkl")
)
if self.live:
self.model_dictionary[self.model_filename] = model
# TODO add a helper function to let user save/load any data they are custom adding. We
# do not want them having to edit the default save/load methods here. Below is an example
# of what we do NOT want.
# if self.freqai_config['feature_parameters']['determine_statistical_distributions']:
# self.data_dictionary["upper_quantiles"].to_pickle(
# save_path / str(self.model_filename + "_upper_quantiles.pkl")
# )
# self.data_dictionary["lower_quantiles"].to_pickle(
# save_path / str(self.model_filename + "_lower_quantiles.pkl")
# )
return
def load_data(self) -> Any:
"""
loads all data required to make a prediction on a sub-train time range
:returns:
:model: User trained model which can be inferenced for new predictions
"""
with open(self.model_path / str(self.model_filename + "_metadata.json"), "r") as fp:
self.data = json.load(fp)
self.training_features_list = self.data["training_features_list"]
self.data_dictionary["train_features"] = pd.read_pickle(
self.model_path / str(self.model_filename + "_trained_df.pkl")
)
# TODO add a helper function to let user save/load any data they are custom adding. We
# do not want them having to edit the default save/load methods here. Below is an example
# of what we do NOT want.
# if self.freqai_config['feature_parameters']['determine_statistical_distributions']:
# self.data_dictionary["upper_quantiles"] = pd.read_pickle(
# self.model_path / str(self.model_filename + "_upper_quantiles.pkl")
# )
# self.data_dictionary["lower_quantiles"] = pd.read_pickle(
# self.model_path / str(self.model_filename + "_lower_quantiles.pkl")
# )
self.model_path = Path(self.data["model_path"])
self.model_filename = self.data["model_filename"]
# try to access model in memory instead of loading object from disk to save time
if self.live and self.model_filename in self.model_dictionary:
model = self.model_dictionary[self.model_filename]
else:
model = load(self.model_path / str(self.model_filename + "_model.joblib"))
if Path(self.model_path / str(self.model_filename +
"_svm_model.joblib")).resolve().exists():
self.svm_model = load(self.model_path / str(self.model_filename + "_svm_model.joblib"))
assert model, (
f"Unable to load model, ensure model exists at "
f"{self.model_path} "
)
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
self.pca = pk.load(
open(self.model_path / str(self.model_filename + "_pca_object.pkl"), "rb")
)
return model
def make_train_test_datasets(
self, filtered_dataframe: DataFrame, labels: DataFrame
) -> Dict[Any, Any]:
"""
Given the dataframe for the full history for training, split the data into
training and test data according to user specified parameters in configuration
file.
:filtered_dataframe: cleaned dataframe ready to be split.
:labels: cleaned labels ready to be split.
"""
weights: npt.ArrayLike
if self.config["freqai"]["feature_parameters"]["weight_factor"] > 0:
weights = self.set_weights_higher_recent(len(filtered_dataframe))
else:
weights = np.ones(len(filtered_dataframe))
if self.config["freqai"]["feature_parameters"]["stratify"] > 0:
stratification = np.zeros(len(filtered_dataframe))
for i in range(1, len(stratification)):
if i % self.config["freqai"]["feature_parameters"]["stratify"] == 0:
stratification[i] = 1
(
train_features,
test_features,
train_labels,
test_labels,
train_weights,
test_weights,
) = train_test_split(
filtered_dataframe[: filtered_dataframe.shape[0]],
labels,
weights,
stratify=stratification,
# shuffle=False,
**self.config["freqai"]["data_split_parameters"]
)
return self.build_data_dictionary(
train_features, test_features, train_labels, test_labels, train_weights, test_weights
)
def filter_features(
self,
unfiltered_dataframe: DataFrame,
training_feature_list: List,
labels: DataFrame = pd.DataFrame(),
training_filter: bool = True,
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the unfiltered dataframe to extract the user requested features and properly
remove all NaNs. Any row with a NaN is removed from training dataset or replaced with
0s in the prediction dataset. However, prediction dataset do_predict will reflect any
row that had a NaN and will shield user from that prediction.
:params:
:unfiltered_dataframe: the full dataframe for the present training period
:training_feature_list: list, the training feature list constructed by
self.build_feature_list() according to user specified parameters in the configuration file.
:labels: the labels for the dataset
:training_filter: boolean which lets the function know if it is training data or
prediction data to be filtered.
:returns:
:filtered_dataframe: dataframe cleaned of NaNs and only containing the user
requested feature set.
:labels: labels cleaned of NaNs.
"""
filtered_dataframe = unfiltered_dataframe.filter(training_feature_list, axis=1)
drop_index = pd.isnull(filtered_dataframe).any(1) # get the rows that have NaNs,
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
if (
training_filter
): # we don't care about total row number (total no. datapoints) in training, we only care
# about removing any row with NaNs
drop_index_labels = pd.isnull(labels)
drop_index_labels = drop_index_labels.replace(True, 1).replace(False, 0)
filtered_dataframe = filtered_dataframe[
(drop_index == 0) & (drop_index_labels == 0)
] # dropping values
labels = labels[
(drop_index == 0) & (drop_index_labels == 0)
] # assuming the labels depend entirely on the dataframe here.
# logger.info(
# "dropped %s training points due to NaNs, ensure all historical data downloaded",
# len(unfiltered_dataframe) - len(filtered_dataframe),
# )
self.data["filter_drop_index_training"] = drop_index
else:
# we are backtesting so we need to preserve row number to send back to strategy,
# so now we use do_predict to avoid any prediction based on a NaN
drop_index = pd.isnull(filtered_dataframe).any(1)
self.data["filter_drop_index_prediction"] = drop_index
filtered_dataframe.fillna(0, inplace=True)
# replacing all NaNs with zeros to avoid issues in 'prediction', but any prediction
# that was based on a single NaN is ultimately protected from buys with do_predict
drop_index = ~drop_index
self.do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
logger.info(
"dropped %s of %s prediction data points due to NaNs.",
len(self.do_predict) - self.do_predict.sum(),
len(filtered_dataframe),
)
return filtered_dataframe, labels
def build_data_dictionary(
self,
train_df: DataFrame,
test_df: DataFrame,
train_labels: DataFrame,
test_labels: DataFrame,
train_weights: Any,
test_weights: Any,
) -> Dict:
self.data_dictionary = {
"train_features": train_df,
"test_features": test_df,
"train_labels": train_labels,
"test_labels": test_labels,
"train_weights": train_weights,
"test_weights": test_weights,
}
return self.data_dictionary
def normalize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
"""
Normalize all data in the data_dictionary according to the training dataset
:params:
:data_dictionary: dictionary containing the cleaned and split training/test data/labels
:returns:
:data_dictionary: updated dictionary with standardized values.
"""
# standardize the data by training stats
train_mean = data_dictionary["train_features"].mean()
train_std = data_dictionary["train_features"].std()
data_dictionary["train_features"] = (
data_dictionary["train_features"] - train_mean
) / train_std
data_dictionary["test_features"] = (
data_dictionary["test_features"] - train_mean
) / train_std
train_labels_std = data_dictionary["train_labels"].std()
train_labels_mean = data_dictionary["train_labels"].mean()
data_dictionary["train_labels"] = (
data_dictionary["train_labels"] - train_labels_mean
) / train_labels_std
data_dictionary["test_labels"] = (
data_dictionary["test_labels"] - train_labels_mean
) / train_labels_std
for item in train_std.keys():
self.data[item + "_std"] = train_std[item]
self.data[item + "_mean"] = train_mean[item]
self.data["labels_std"] = train_labels_std
self.data["labels_mean"] = train_labels_mean
return data_dictionary
def standardize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
"""
Standardize all data in the data_dictionary according to the training dataset
:params:
:data_dictionary: dictionary containing the cleaned and split training/test data/labels
:returns:
:data_dictionary: updated dictionary with standardized values.
"""
# standardize the data by training stats
train_max = data_dictionary["train_features"].max()
train_min = data_dictionary["train_features"].min()
data_dictionary["train_features"] = 2 * (
data_dictionary["train_features"] - train_min
) / (train_max - train_min) - 1
data_dictionary["test_features"] = 2 * (
data_dictionary["test_features"] - train_min
) / (train_max - train_min) - 1
train_labels_max = data_dictionary["train_labels"].max()
train_labels_min = data_dictionary["train_labels"].min()
data_dictionary["train_labels"] = 2 * (
data_dictionary["train_labels"] - train_labels_min
) / (train_labels_max - train_labels_min) - 1
data_dictionary["test_labels"] = 2 * (
data_dictionary["test_labels"] - train_labels_min
) / (train_labels_max - train_labels_min) - 1
for item in train_max.keys():
self.data[item + "_max"] = train_max[item]
self.data[item + "_min"] = train_min[item]
self.data["labels_max"] = train_labels_max
self.data["labels_min"] = train_labels_min
return data_dictionary
def standardize_data_from_metadata(self, df: DataFrame) -> DataFrame:
"""
Standardizes a set of data using the mean and standard deviation from
the associated training data.
:params:
:df: Dataframe to be standardized
"""
for item in df.keys():
df[item] = 2 * (df[item] - self.data[item + "_min"]) / (self.data[item + "_max"] -
self.data[item + '_min']) - 1
return df
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
"""
Normalizes a set of data using the mean and standard deviation from
the associated training data.
:params:
:df: Dataframe to be standardized
"""
for item in df.keys():
df[item] = (df[item] - self.data[item + "_mean"]) / self.data[item + "_std"]
return df
def split_timerange(
self, tr: str, train_split: int = 28, bt_split: int = 7
) -> Tuple[list, list]:
"""
Function which takes a single time range (tr) and splits it
into sub timeranges to train and backtest on based on user input
tr: str, full timerange to train on
train_split: the period length for the each training (days). Specified in user
configuration file
bt_split: the backtesting length (dats). Specified in user configuration file
"""
train_period = train_split * SECONDS_IN_DAY
bt_period = bt_split * SECONDS_IN_DAY
full_timerange = TimeRange.parse_timerange(tr)
config_timerange = TimeRange.parse_timerange(self.config["timerange"])
if config_timerange.stopts == 0:
config_timerange.stopts = int(datetime.datetime.now(
tz=datetime.timezone.utc).timestamp())
timerange_train = copy.deepcopy(full_timerange)
timerange_backtest = copy.deepcopy(full_timerange)
tr_training_list = []
tr_backtesting_list = []
first = True
# within_config_timerange = True
while True:
if not first:
timerange_train.startts = timerange_train.startts + bt_period
timerange_train.stopts = timerange_train.startts + train_period
first = False
start = datetime.datetime.utcfromtimestamp(timerange_train.startts)
stop = datetime.datetime.utcfromtimestamp(timerange_train.stopts)
tr_training_list.append(start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d"))
# associated backtest period
timerange_backtest.startts = timerange_train.stopts
timerange_backtest.stopts = timerange_backtest.startts + bt_period
if timerange_backtest.stopts > config_timerange.stopts:
timerange_backtest.stopts = config_timerange.stopts
start = datetime.datetime.utcfromtimestamp(timerange_backtest.startts)
stop = datetime.datetime.utcfromtimestamp(timerange_backtest.stopts)
tr_backtesting_list.append(start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d"))
# ensure we are predicting on exactly same amount of data as requested by user defined
# --timerange
if timerange_backtest.stopts == config_timerange.stopts:
break
print(tr_training_list, tr_backtesting_list)
return tr_training_list, tr_backtesting_list
def slice_dataframe(self, tr: str, df: DataFrame) -> DataFrame:
"""
Given a full dataframe, extract the user desired window
:params:
:tr: timerange string that we wish to extract from df
:df: Dataframe containing all candles to run the entire backtest. Here
it is sliced down to just the present training period.
"""
timerange = TimeRange.parse_timerange(tr)
start = datetime.datetime.fromtimestamp(timerange.startts, tz=datetime.timezone.utc)
stop = datetime.datetime.fromtimestamp(timerange.stopts, tz=datetime.timezone.utc)
df = df.loc[df["date"] >= start, :]
df = df.loc[df["date"] <= stop, :]
return df
def principal_component_analysis(self) -> None:
"""
Performs Principal Component Analysis on the data for dimensionality reduction
and outlier detection (see self.remove_outliers())
No parameters or returns, it acts on the data_dictionary held by the DataHandler.
"""
from sklearn.decomposition import PCA # avoid importing if we dont need it
n_components = self.data_dictionary["train_features"].shape[1]
pca = PCA(n_components=n_components)
pca = pca.fit(self.data_dictionary["train_features"])
n_keep_components = np.argmin(pca.explained_variance_ratio_.cumsum() < 0.999)
pca2 = PCA(n_components=n_keep_components)
self.data["n_kept_components"] = n_keep_components
pca2 = pca2.fit(self.data_dictionary["train_features"])
logger.info("reduced feature dimension by %s", n_components - n_keep_components)
logger.info("explained variance %f", np.sum(pca2.explained_variance_ratio_))
train_components = pca2.transform(self.data_dictionary["train_features"])
test_components = pca2.transform(self.data_dictionary["test_features"])
self.data_dictionary["train_features"] = pd.DataFrame(
data=train_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["train_features"].index,
)
self.data_dictionary["test_features"] = pd.DataFrame(
data=test_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["test_features"].index,
)
self.data["n_kept_components"] = n_keep_components
self.pca = pca2
logger.info(f'PCA reduced total features from {n_components} to {n_keep_components}')
if not self.model_path.is_dir():
self.model_path.mkdir(parents=True, exist_ok=True)
pk.dump(pca2, open(self.model_path / str(self.model_filename + "_pca_object.pkl"), "wb"))
return None
def compute_distances(self) -> float:
logger.info("computing average mean distance for all training points")
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=-1)
avg_mean_dist = pairwise.mean(axis=1).mean()
logger.info("avg_mean_dist %s", avg_mean_dist)
return avg_mean_dist
def use_SVM_to_remove_outliers(self, predict: bool) -> None:
if predict:
assert self.svm_model, "No svm model available for outlier removal"
y_pred = self.svm_model.predict(self.data_dictionary["prediction_features"])
do_predict = np.where(y_pred == -1, 0, y_pred)
logger.info(
f'svm_remove_outliers() tossed {len(do_predict) - do_predict.sum()} predictions'
)
self.do_predict += do_predict
self.do_predict -= 1
else:
# use SGDOneClassSVM to increase speed?
self.svm_model = linear_model.SGDOneClassSVM(nu=0.1).fit(
self.data_dictionary["train_features"]
)
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
dropped_points = np.where(y_pred == -1, 0, y_pred)
# keep_index = np.where(y_pred == 1)
self.data_dictionary["train_features"] = self.data_dictionary[
"train_features"][(y_pred == 1)]
self.data_dictionary["train_labels"] = self.data_dictionary[
"train_labels"][(y_pred == 1)]
self.data_dictionary["train_weights"] = self.data_dictionary[
"train_weights"][(y_pred == 1)]
logger.info(
f'svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}'
f' train points from {len(y_pred)}'
)
# same for test data
y_pred = self.svm_model.predict(self.data_dictionary["test_features"])
dropped_points = np.where(y_pred == -1, 0, y_pred)
self.data_dictionary["test_features"] = self.data_dictionary[
"test_features"][(y_pred == 1)]
self.data_dictionary["test_labels"] = self.data_dictionary[
"test_labels"][(y_pred == 1)]
self.data_dictionary["test_weights"] = self.data_dictionary[
"test_weights"][(y_pred == 1)]
logger.info(
f'svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}'
f' test points from {len(y_pred)}'
)
return
def find_features(self, dataframe: DataFrame) -> list:
column_names = dataframe.columns
features = [c for c in column_names if '%' in c]
assert features, ("Could not find any features!")
return features
def check_if_pred_in_training_spaces(self) -> None:
"""
Compares the distance from each prediction point to each training data
point. It uses this information to estimate a Dissimilarity Index (DI)
and avoid making predictions on any points that are too far away
from the training data set.
"""
distance = pairwise_distances(
self.data_dictionary["train_features"],
self.data_dictionary["prediction_features"],
n_jobs=-1,
)
do_predict = np.where(
distance.min(axis=0) / self.data["avg_mean_dist"]
< self.config["freqai"]["feature_parameters"]["DI_threshold"],
1,
0,
)
# logger.info(
# "Distance checker tossed %s predictions for being too far from training data",
# len(do_predict) - do_predict.sum(),
# )
self.do_predict += do_predict
self.do_predict -= 1
def set_weights_higher_recent(self, num_weights: int) -> npt.ArrayLike:
"""
Set weights so that recent data is more heavily weighted during
training than older data.
"""
weights = np.zeros(num_weights)
for i in range(1, len(weights)):
weights[len(weights) - i] = np.exp(
-i / (self.config["freqai"]["feature_parameters"]["weight_factor"] * num_weights)
)
return weights
def append_predictions(self, predictions, do_predict, len_dataframe):
"""
Append backtest prediction from current backtest period to all previous periods
"""
ones = np.ones(len_dataframe)
s_mean, s_std = ones * self.data["s_mean"], ones * self.data["s_std"]
self.full_predictions = np.append(self.full_predictions, predictions)
self.full_do_predict = np.append(self.full_do_predict, do_predict)
self.full_target_mean = np.append(self.full_target_mean, s_mean)
self.full_target_std = np.append(self.full_target_std, s_std)
return
def fill_predictions(self, len_dataframe):
"""
Back fill values to before the backtesting range so that the dataframe matches size
when it goes back to the strategy. These rows are not included in the backtest.
"""
filler = np.zeros(len_dataframe - len(self.full_predictions)) # startup_candle_count
self.full_predictions = np.append(filler, self.full_predictions)
self.full_do_predict = np.append(filler, self.full_do_predict)
self.full_target_mean = np.append(filler, self.full_target_mean)
self.full_target_std = np.append(filler, self.full_target_std)
return
def create_fulltimerange(self, backtest_tr: str, backtest_period: int) -> str:
backtest_timerange = TimeRange.parse_timerange(backtest_tr)
if backtest_timerange.stopts == 0:
backtest_timerange.stopts = int(datetime.datetime.now(
tz=datetime.timezone.utc).timestamp())
backtest_timerange.startts = backtest_timerange.startts - backtest_period * SECONDS_IN_DAY
start = datetime.datetime.utcfromtimestamp(backtest_timerange.startts)
stop = datetime.datetime.utcfromtimestamp(backtest_timerange.stopts)
full_timerange = start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d")
self.full_path = Path(
self.config["user_data_dir"]
/ "models"
/ str(full_timerange + self.freqai_config["identifier"])
)
config_path = Path(self.config["config_files"][0])
if not self.full_path.is_dir():
self.full_path.mkdir(parents=True, exist_ok=True)
shutil.copy(
config_path.resolve(),
Path(self.full_path / config_path.parts[-1]),
)
return full_timerange
def check_if_new_training_required(self, trained_timerange: TimeRange,
metadata: dict,
timestamp: int = 0) -> Tuple[bool, TimeRange, int]:
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
if trained_timerange.startts != 0:
elapsed_time = (time - trained_timerange.stopts) / SECONDS_IN_DAY
retrain = elapsed_time > self.freqai_config['backtest_period']
if retrain:
trained_timerange.startts += self.freqai_config['backtest_period'] * SECONDS_IN_DAY
trained_timerange.stopts += self.freqai_config['backtest_period'] * SECONDS_IN_DAY
else: # user passed no live_trained_timerange in config
trained_timerange = TimeRange()
trained_timerange.startts = int(time - self.freqai_config['train_period'] *
SECONDS_IN_DAY)
trained_timerange.stopts = int(time)
retrain = True
timestamp = trained_timerange.stopts
if retrain:
coin, _ = metadata['pair'].split("/")
# set the new model_path
self.model_path = Path(self.full_path / str("sub-train" + "-" +
str(timestamp)))
self.model_filename = "cb_" + coin.lower() + "_" + str(timestamp)
# this is not persistent at the moment TODO
self.freqai_config['live_trained_timerange'] = str(timestamp)
# enables persistence, but not fully implemented into save/load data yer
self.data['live_trained_timerange'] = str(timestamp)
return retrain, trained_timerange, timestamp
def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict) -> None:
exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'],
self.config, validate=False)
pairs = self.freqai_config['corr_pairlist']
if metadata['pair'] not in pairs:
pairs += metadata['pair'] # dont include pair twice
# timerange = TimeRange.parse_timerange(new_timerange)
refresh_backtest_ohlcv_data(
exchange, pairs=pairs, timeframes=self.freqai_config['timeframes'],
datadir=self.config['datadir'], timerange=timerange,
new_pairs_days=self.config['new_pairs_days'],
erase=False, data_format=self.config['dataformat_ohlcv'],
trading_mode=self.config.get('trading_mode', 'spot'),
prepend=self.config.get('prepend_data', False)
)
def load_pairs_histories(self, timerange: TimeRange, metadata: dict) -> Tuple[Dict[Any, Any],
DataFrame]:
corr_dataframes: Dict[Any, Any] = {}
base_dataframes: Dict[Any, Any] = {}
pairs = self.freqai_config['corr_pairlist'] # + [metadata['pair']]
# timerange = TimeRange.parse_timerange(new_timerange)
for tf in self.freqai_config['timeframes']:
base_dataframes[tf] = load_pair_history(datadir=self.config['datadir'],
timeframe=tf,
pair=metadata['pair'], timerange=timerange)
for p in pairs:
if metadata['pair'] in p:
continue # dont repeat anything from whitelist
if p not in corr_dataframes:
corr_dataframes[p] = {}
corr_dataframes[p][tf] = load_pair_history(datadir=self.config['datadir'],
timeframe=tf,
pair=p, timerange=timerange)
return corr_dataframes, base_dataframes
def use_strategy_to_populate_indicators(self, strategy: IStrategy,
corr_dataframes: dict,
base_dataframes: dict,
metadata: dict) -> DataFrame:
dataframe = base_dataframes[self.config['timeframe']]
for tf in self.freqai_config["timeframes"]:
dataframe = strategy.populate_any_indicators(metadata['pair'],
dataframe.copy(),
tf,
base_dataframes[tf],
coin=metadata['pair'].split("/")[0] + "-"
)
for i in self.freqai_config["corr_pairlist"]:
if metadata['pair'] in i:
continue # dont repeat anything from whitelist
dataframe = strategy.populate_any_indicators(i,
dataframe.copy(),
tf,
corr_dataframes[i][tf],
coin=i.split("/")[0] + "-"
)
return dataframe
def np_encoder(self, object):
if isinstance(object, np.generic):
return object.item()
# Functions containing useful data manpulation examples. but not actively in use.
# def build_feature_list(self, config: dict, metadata: dict) -> list:
# """
# SUPERCEDED BY self.find_features()
# Build the list of features that will be used to filter
# the full dataframe. Feature list is construced from the
# user configuration file.
# :params:
# :config: Canonical freqtrade config file containing all
# user defined input in config['freqai] dictionary.
# """
# features = []
# for tf in config["freqai"]["timeframes"]:
# for ft in config["freqai"]["base_features"]:
# for n in range(config["freqai"]["feature_parameters"]["shift"] + 1):
# shift = ""
# if n > 0:
# shift = "_shift-" + str(n)
# features.append(metadata['pair'].split("/")[0] + "-" + ft + shift + "_" + tf)
# for p in config["freqai"]["corr_pairlist"]:
# if metadata['pair'] in p:
# continue # avoid duplicate features
# features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
# # logger.info("number of features %s", len(features))
# return features
# Possibly phasing these outlier removal methods below out in favor of
# use_SVM_to_remove_outliers (computationally more efficient and apparently higher performance).
# But these have good data manipulation examples, so keep them commented here for now.
# def determine_statistical_distributions(self) -> None:
# from fitter import Fitter
# logger.info('Determining best model for all features, may take some time')
# def compute_quantiles(ft):
# f = Fitter(self.data_dictionary["train_features"][ft],
# distributions=['gamma', 'cauchy', 'laplace',
# 'beta', 'uniform', 'lognorm'])
# f.fit()
# # f.summary()
# dist = list(f.get_best().items())[0][0]
# params = f.get_best()[dist]
# upper_q = getattr(spy.stats, list(f.get_best().items())[0][0]).ppf(0.999, **params)
# lower_q = getattr(spy.stats, list(f.get_best().items())[0][0]).ppf(0.001, **params)
# return ft, upper_q, lower_q, dist
# quantiles_tuple = Parallel(n_jobs=-1)(
# delayed(compute_quantiles)(ft) for ft in self.data_dictionary[
# 'train_features'].columns)
# df = pd.DataFrame(quantiles_tuple, columns=['features', 'upper_quantiles',
# 'lower_quantiles', 'dist'])
# self.data_dictionary['upper_quantiles'] = df['upper_quantiles']
# self.data_dictionary['lower_quantiles'] = df['lower_quantiles']
# return
# def remove_outliers(self, predict: bool) -> None:
# """
# Remove data that looks like an outlier based on the distribution of each
# variable.
# :params:
# :predict: boolean which tells the function if this is prediction data or
# training data coming in.
# """
# lower_quantile = self.data_dictionary["lower_quantiles"].to_numpy()
# upper_quantile = self.data_dictionary["upper_quantiles"].to_numpy()
# if predict:
# df = self.data_dictionary["prediction_features"][
# (self.data_dictionary["prediction_features"] < upper_quantile)
# & (self.data_dictionary["prediction_features"] > lower_quantile)
# ]
# drop_index = pd.isnull(df).any(1)
# self.data_dictionary["prediction_features"].fillna(0, inplace=True)
# drop_index = ~drop_index
# do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
# logger.info(
# "remove_outliers() tossed %s predictions",
# len(do_predict) - do_predict.sum(),
# )
# self.do_predict += do_predict
# self.do_predict -= 1
# else:
# filter_train_df = self.data_dictionary["train_features"][
# (self.data_dictionary["train_features"] < upper_quantile)
# & (self.data_dictionary["train_features"] > lower_quantile)
# ]
# drop_index = pd.isnull(filter_train_df).any(1)
# drop_index = drop_index.replace(True, 1).replace(False, 0)
# self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
# (drop_index == 0)
# ]
# self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
# (drop_index == 0)
# ]
# self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
# (drop_index == 0)
# ]
# logger.info(
# f'remove_outliers() tossed {drop_index.sum()}'
# f' training points from {len(filter_train_df)}'
# )
# # do the same for the test data
# filter_test_df = self.data_dictionary["test_features"][
# (self.data_dictionary["test_features"] < upper_quantile)
# & (self.data_dictionary["test_features"] > lower_quantile)
# ]
# drop_index = pd.isnull(filter_test_df).any(1)
# drop_index = drop_index.replace(True, 1).replace(False, 0)
# self.data_dictionary["test_labels"] = self.data_dictionary["test_labels"][
# (drop_index == 0)
# ]
# self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
# (drop_index == 0)
# ]
# self.data_dictionary["test_weights"] = self.data_dictionary["test_weights"][
# (drop_index == 0)
# ]
# logger.info(
# f'remove_outliers() tossed {drop_index.sum()}'
# f' test points from {len(filter_test_df)}'
# )
# return