mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
155 lines
5.7 KiB
Python
155 lines
5.7 KiB
Python
"""
|
|
Functions to convert data from one format to another
|
|
"""
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Dict, List
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, to_datetime
|
|
|
|
from freqtrade.configuration import TimeRange
|
|
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TRADES_DTYPES,
|
|
Config, TradeList)
|
|
from freqtrade.enums import CandleType
|
|
from freqtrade.exceptions import OperationalException
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def trades_df_remove_duplicates(trades: pd.DataFrame) -> pd.DataFrame:
|
|
"""
|
|
Removes duplicates from the trades DataFrame.
|
|
Uses pandas.DataFrame.drop_duplicates to remove duplicates based on the 'timestamp' column.
|
|
:param trades: DataFrame with the columns constants.DEFAULT_TRADES_COLUMNS
|
|
:return: DataFrame with duplicates removed based on the 'timestamp' column
|
|
"""
|
|
return trades.drop_duplicates(subset=['timestamp', 'id'])
|
|
|
|
|
|
def trades_dict_to_list(trades: List[Dict]) -> TradeList:
|
|
"""
|
|
Convert fetch_trades result into a List (to be more memory efficient).
|
|
:param trades: List of trades, as returned by ccxt.fetch_trades.
|
|
:return: List of Lists, with constants.DEFAULT_TRADES_COLUMNS as columns
|
|
"""
|
|
return [[t[col] for col in DEFAULT_TRADES_COLUMNS] for t in trades]
|
|
|
|
|
|
def trades_convert_types(trades: DataFrame) -> DataFrame:
|
|
"""
|
|
Convert Trades dtypes and add 'date' column
|
|
"""
|
|
trades = trades.astype(TRADES_DTYPES)
|
|
trades['date'] = to_datetime(trades['timestamp'], unit='ms', utc=True)
|
|
return trades
|
|
|
|
|
|
def trades_list_to_df(trades: TradeList, convert: bool = True):
|
|
"""
|
|
convert trades list to dataframe
|
|
:param trades: List of Lists with constants.DEFAULT_TRADES_COLUMNS as columns
|
|
"""
|
|
if not trades:
|
|
df = DataFrame(columns=DEFAULT_TRADES_COLUMNS)
|
|
else:
|
|
df = DataFrame(trades, columns=DEFAULT_TRADES_COLUMNS)
|
|
|
|
if convert:
|
|
df = trades_convert_types(df)
|
|
|
|
return df
|
|
|
|
|
|
def trades_to_ohlcv(trades: DataFrame, timeframe: str) -> DataFrame:
|
|
"""
|
|
Converts trades list to OHLCV list
|
|
:param trades: List of trades, as returned by ccxt.fetch_trades.
|
|
:param timeframe: Timeframe to resample data to
|
|
:return: OHLCV Dataframe.
|
|
:raises: ValueError if no trades are provided
|
|
"""
|
|
from freqtrade.exchange import timeframe_to_resample_freq
|
|
if trades.empty:
|
|
raise ValueError('Trade-list empty.')
|
|
df = trades.set_index('date', drop=True)
|
|
resample_interval = timeframe_to_resample_freq(timeframe)
|
|
df_new = df['price'].resample(resample_interval).ohlc()
|
|
df_new['volume'] = df['amount'].resample(resample_interval).sum()
|
|
df_new['date'] = df_new.index
|
|
# Drop 0 volume rows
|
|
df_new = df_new.dropna()
|
|
return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS]
|
|
|
|
|
|
def convert_trades_to_ohlcv(
|
|
pairs: List[str],
|
|
timeframes: List[str],
|
|
datadir: Path,
|
|
timerange: TimeRange,
|
|
erase: bool = False,
|
|
data_format_ohlcv: str = 'feather',
|
|
data_format_trades: str = 'feather',
|
|
candle_type: CandleType = CandleType.SPOT
|
|
) -> None:
|
|
"""
|
|
Convert stored trades data to ohlcv data
|
|
"""
|
|
from freqtrade.data.history.idatahandler import get_datahandler
|
|
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
|
|
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
|
|
if not pairs:
|
|
pairs = data_handler_trades.trades_get_pairs(datadir)
|
|
|
|
logger.info(f"About to convert pairs: '{', '.join(pairs)}', "
|
|
f"intervals: '{', '.join(timeframes)}' to {datadir}")
|
|
|
|
for pair in pairs:
|
|
trades = data_handler_trades.trades_load(pair)
|
|
for timeframe in timeframes:
|
|
if erase:
|
|
if data_handler_ohlcv.ohlcv_purge(pair, timeframe, candle_type=candle_type):
|
|
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
|
|
try:
|
|
ohlcv = trades_to_ohlcv(trades, timeframe)
|
|
# Store ohlcv
|
|
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv, candle_type=candle_type)
|
|
except ValueError:
|
|
logger.exception(f'Could not convert {pair} to OHLCV.')
|
|
|
|
|
|
def convert_trades_format(config: Config, convert_from: str, convert_to: str, erase: bool):
|
|
"""
|
|
Convert trades from one format to another format.
|
|
:param config: Config dictionary
|
|
:param convert_from: Source format
|
|
:param convert_to: Target format
|
|
:param erase: Erase source data (does not apply if source and target format are identical)
|
|
"""
|
|
if convert_from == 'kraken_csv':
|
|
if config['exchange']['name'] != 'kraken':
|
|
raise OperationalException(
|
|
'Converting from csv is only supported for kraken.'
|
|
'Please refer to the documentation for details about this special mode.'
|
|
)
|
|
from freqtrade.data.converter.trade_converter_kraken import import_kraken_trades_from_csv
|
|
import_kraken_trades_from_csv(config, convert_to)
|
|
return
|
|
|
|
from freqtrade.data.history.idatahandler import get_datahandler
|
|
src = get_datahandler(config['datadir'], convert_from)
|
|
trg = get_datahandler(config['datadir'], convert_to)
|
|
|
|
if 'pairs' not in config:
|
|
config['pairs'] = src.trades_get_pairs(config['datadir'])
|
|
logger.info(f"Converting trades for {config['pairs']}")
|
|
|
|
for pair in config['pairs']:
|
|
data = src.trades_load(pair=pair)
|
|
logger.info(f"Converting {len(data)} trades for {pair}")
|
|
trg.trades_store(pair, data)
|
|
if erase and convert_from != convert_to:
|
|
logger.info(f"Deleting source Trade data for {pair}.")
|
|
src.trades_purge(pair=pair)
|