freqtrade_origin/freqtrade/data/converter.py

178 lines
7.0 KiB
Python

"""
Functions to convert data from one format to another
"""
import logging
from datetime import datetime, timezone
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.configuration.timerange import TimeRange
logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe
:param ticker: ticker list, as returned by exchange.async_get_candle_history
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
logger.debug("Parsing tickerlist to dataframe")
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
frame = DataFrame(ticker, columns=cols)
frame['date'] = to_datetime(frame['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
# Some exchanges return int values for volume and even for ohlc.
# Convert them since TA-LIB indicators used in the strategy assume floats
# and fail with exception...
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(frame, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a ohlcv dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing ohlcv data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks
data = data.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'max',
})
# eliminate partial candle
if drop_incomplete:
data.drop(data.tail(1).index, inplace=True)
logger.debug('Dropping last candle')
if fill_missing:
return ohlcv_fill_up_missing_data(data, timeframe, pair)
else:
return data
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
"""
Fills up missing data with 0 volume rows,
using the previous close as price for "open", "high" "low" and "close", volume is set to 0
"""
from freqtrade.exchange import timeframe_to_minutes
ohlc_dict = {
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}
ticker_minutes = timeframe_to_minutes(timeframe)
# Resample to create "NAN" values
df = dataframe.resample(f'{ticker_minutes}min', on='date').agg(ohlc_dict)
# Forwardfill close for missing columns
df['close'] = df['close'].fillna(method='ffill')
# Use close for "open, high, low"
df.loc[:, ['open', 'high', 'low']] = df[['open', 'high', 'low']].fillna(
value={'open': df['close'],
'high': df['close'],
'low': df['close'],
})
df.reset_index(inplace=True)
len_before = len(dataframe)
len_after = len(df)
if len_before != len_after:
logger.info(f"Missing data fillup for {pair}: before: {len_before} - after: {len_after}")
return df
def trim_dataframe(df: DataFrame, timerange: TimeRange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
"""
Gets order book list, returns dataframe with below format per suggested by creslin
-------------------------------------------------------------------
b_sum b_size bids asks a_size a_sum
-------------------------------------------------------------------
"""
cols = ['bids', 'b_size']
bids_frame = DataFrame(bids, columns=cols)
# add cumulative sum column
bids_frame['b_sum'] = bids_frame['b_size'].cumsum()
cols2 = ['asks', 'a_size']
asks_frame = DataFrame(asks, columns=cols2)
# add cumulative sum column
asks_frame['a_sum'] = asks_frame['a_size'].cumsum()
frame = pd.concat([bids_frame['b_sum'], bids_frame['b_size'], bids_frame['bids'],
asks_frame['asks'], asks_frame['a_size'], asks_frame['a_sum']], axis=1,
keys=['b_sum', 'b_size', 'bids', 'asks', 'a_size', 'a_sum'])
# logger.info('order book %s', frame )
return frame
def trades_to_ohlcv(trades: list, timeframe: str) -> list:
"""
Converts trades list to ohlcv list
:param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Ticker timeframe to resample data to
:return: ohlcv timeframe as list (as returned by ccxt.fetch_ohlcv)
"""
from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe)
df = pd.DataFrame(trades)
df['datetime'] = pd.to_datetime(df['datetime'])
df = df.set_index('datetime')
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
df_new['date'] = df_new.index.astype("int64") // 10 ** 6
# Drop 0 volume rows
df_new = df_new.dropna()
columns = ["date", "open", "high", "low", "close", "volume"]
return list(zip(*[df_new[x].values.tolist() for x in columns]))