freqtrade_origin/freqtrade/freqai/freqai_interface.py

300 lines
13 KiB
Python

# import contextlib
import gc
import logging
# import sys
import threading
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Dict, Tuple
import numpy.typing as npt
import pandas as pd
from pandas import DataFrame
from freqtrade.enums import RunMode
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.strategy.interface import IStrategy
pd.options.mode.chained_assignment = None
logger = logging.getLogger(__name__)
# FIXME: suppress stdout for background training
# class DummyFile(object):
# def write(self, x): pass
# @contextlib.contextmanager
# def nostdout():
# save_stdout = sys.stdout
# sys.stdout = DummyFile()
# yield
# sys.stdout = save_stdout
def threaded(fn):
def wrapper(*args, **kwargs):
threading.Thread(target=fn, args=args, kwargs=kwargs).start()
return wrapper
class IFreqaiModel(ABC):
"""
Class containing all tools for training and prediction in the strategy.
User models should inherit from this class as shown in
templates/ExamplePredictionModel.py where the user overrides
train(), predict(), fit(), and make_labels().
Author: Robert Caulk, rob.caulk@gmail.com
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.freqai_info = config["freqai"]
self.data_split_parameters = config["freqai"]["data_split_parameters"]
self.model_training_parameters = config["freqai"]["model_training_parameters"]
self.feature_parameters = config["freqai"]["feature_parameters"]
# self.backtest_timerange = config["timerange"]
self.time_last_trained = None
self.current_time = None
self.model = None
self.predictions = None
self.training_on_separate_thread = False
self.retrain = False
self.first = True
def start(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> DataFrame:
"""
Entry point to the FreqaiModel, it will train a new model if
necessary before making the prediction.
The backtesting and training paradigm is a sliding training window
with a following backtest window. Both windows slide according to the
length of the backtest window. This function is not intended to be
overridden by children of IFreqaiModel, but technically, it can be
if the user wishes to make deeper changes to the sliding window
logic.
:params:
:dataframe: Full dataframe coming from strategy - it contains entire
backtesting timerange + additional historical data necessary to train
the model.
:metadata: pair metadata coming from strategy.
"""
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
self.pair = metadata["pair"]
self.dh = FreqaiDataKitchen(self.config, dataframe, self.live)
if self.live:
# logger.info('testing live')
self.start_live(dataframe, metadata, strategy)
return (self.dh.full_predictions, self.dh.full_do_predict,
self.dh.full_target_mean, self.dh.full_target_std)
logger.info("going to train %s timeranges", len(self.dh.training_timeranges))
# Loop enforcing the sliding window training/backtesting paradigm
# tr_train is the training time range e.g. 1 historical month
# tr_backtest is the backtesting time range e.g. the week directly
# following tr_train. Both of these windows slide through the
# entire backtest
for tr_train, tr_backtest in zip(
self.dh.training_timeranges, self.dh.backtesting_timeranges
):
gc.collect()
# self.config['timerange'] = tr_train
self.dh.data = {} # clean the pair specific data between models
self.training_timerange = tr_train
dataframe_train = self.dh.slice_dataframe(tr_train, dataframe)
dataframe_backtest = self.dh.slice_dataframe(tr_backtest, dataframe)
logger.info("training %s for %s", self.pair, tr_train)
self.dh.model_path = Path(self.dh.full_path / str("sub-train" + "-" + str(tr_train)))
if not self.model_exists(self.pair, training_timerange=tr_train):
self.model = self.train(dataframe_train, metadata)
self.dh.save_data(self.model)
else:
self.model = self.dh.load_data()
# strategy_provided_features = self.dh.find_features(dataframe_train)
# # TOFIX doesnt work with PCA
# if strategy_provided_features != self.dh.training_features_list:
# logger.info("User changed input features, retraining model.")
# self.model = self.train(dataframe_train, metadata)
# self.dh.save_data(self.model)
preds, do_preds = self.predict(dataframe_backtest, metadata)
self.dh.append_predictions(preds, do_preds, len(dataframe_backtest))
print('predictions', len(self.dh.full_predictions),
'do_predict', len(self.dh.full_do_predict))
self.dh.fill_predictions(len(dataframe))
return (self.dh.full_predictions, self.dh.full_do_predict,
self.dh.full_target_mean, self.dh.full_target_std)
def start_live(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> None:
"""
The main broad execution for dry/live. This function will check if a retraining should be
performed, and if so, retrain and reset the model.
"""
self.dh.set_paths()
file_exists = self.model_exists(metadata['pair'],
training_timerange=self.freqai_info[
'live_trained_timerange'])
if not self.training_on_separate_thread:
# this will also prevent other pairs from trying to train simultaneously.
(self.retrain,
self.new_trained_timerange) = self.dh.check_if_new_training_required(self.freqai_info[
'live_trained_timerange'],
metadata)
else:
logger.info("FreqAI training a new model on background thread.")
self.retrain = False
if self.retrain or not file_exists:
if self.first:
self.train_model_in_series(self.new_trained_timerange, metadata, strategy)
self.first = False
else:
self.training_on_separate_thread = True # acts like a lock
self.retrain_model_on_separate_thread(self.new_trained_timerange,
metadata, strategy)
self.model = self.dh.load_data()
strategy_provided_features = self.dh.find_features(dataframe)
if strategy_provided_features != self.dh.training_features_list:
self.train_model_in_series(self.new_trained_timerange, metadata, strategy)
preds, do_preds = self.predict(dataframe, metadata)
self.dh.append_predictions(preds, do_preds, len(dataframe))
return
def make_labels(self, dataframe: DataFrame) -> DataFrame:
"""
User defines the labels here (target values).
:params:
:dataframe: the full dataframe for the present training period
"""
return
@abstractmethod
def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahandler
for storing, saving, loading, and analyzing the data.
:params:
:unfiltered_dataframe: Full dataframe for the current training period
:metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
@abstractmethod
def fit(self) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
management will be properly handled by Freqai.
:params:
:data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
return
@abstractmethod
def predict(self, dataframe: DataFrame, metadata: dict) -> Tuple[npt.ArrayLike, npt.ArrayLike]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:predictions: np.array of predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
@abstractmethod
def data_cleaning_train(self) -> None:
"""
User can add data analysis and cleaning here.
Any function inside this method should drop training data points from the filtered_dataframe
based on user decided logic. See FreqaiDataKitchen::remove_outliers() for an example
of how outlier data points are dropped from the dataframe used for training.
"""
@abstractmethod
def data_cleaning_predict(self) -> None:
"""
User can add data analysis and cleaning here.
These functions each modify self.dh.do_predict, which is a dataframe with equal length
to the number of candles coming from and returning to the strategy. Inside do_predict,
1 allows prediction and < 0 signals to the strategy that the model is not confident in
the prediction.
See FreqaiDataKitchen::remove_outliers() for an example
of how the do_predict vector is modified. do_predict is ultimately passed back to strategy
for buy signals.
"""
def model_exists(self, pair: str, training_timerange: str) -> bool:
"""
Given a pair and path, check if a model already exists
:param pair: pair e.g. BTC/USD
:param path: path to model
"""
if self.live and training_timerange is None:
return False
coin, _ = pair.split("/")
self.dh.model_filename = "cb_" + coin.lower() + "_" + training_timerange
path_to_modelfile = Path(self.dh.model_path / str(self.dh.model_filename + "_model.joblib"))
file_exists = path_to_modelfile.is_file()
if file_exists:
logger.info("Found model at %s", self.dh.model_path / self.dh.model_filename)
else:
logger.info("Could not find model at %s", self.dh.model_path / self.dh.model_filename)
return file_exists
@threaded
def retrain_model_on_separate_thread(self, new_trained_timerange: str, metadata: dict,
strategy: IStrategy):
# with nostdout():
self.dh.download_new_data_for_retraining(new_trained_timerange, metadata)
corr_dataframes, base_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
metadata)
unfiltered_dataframe = self.dh.use_strategy_to_populate_indicators(strategy,
corr_dataframes,
base_dataframes,
metadata)
self.model = self.train(unfiltered_dataframe, metadata)
self.dh.save_data(self.model)
self.training_on_separate_thread = False
self.retrain = False
def train_model_in_series(self, new_trained_timerange: str, metadata: dict,
strategy: IStrategy):
self.dh.download_new_data_for_retraining(new_trained_timerange, metadata)
corr_dataframes, base_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
metadata)
unfiltered_dataframe = self.dh.use_strategy_to_populate_indicators(strategy,
corr_dataframes,
base_dataframes,
metadata)
self.model = self.train(unfiltered_dataframe, metadata)
self.dh.save_data(self.model)
self.retrain = False