mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
1297 lines
44 KiB
Python
1297 lines
44 KiB
Python
# pragma pylint: disable=missing-docstring,W0212,C0103
|
|
from datetime import datetime, timedelta
|
|
from functools import wraps
|
|
from pathlib import Path
|
|
from unittest.mock import ANY, MagicMock, PropertyMock
|
|
|
|
import pandas as pd
|
|
import pytest
|
|
from filelock import Timeout
|
|
from skopt.space import Integer
|
|
|
|
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_hyperopt
|
|
from freqtrade.data.history import load_data
|
|
from freqtrade.enums import ExitType, RunMode
|
|
from freqtrade.exceptions import OperationalException
|
|
from freqtrade.optimize.hyperopt import Hyperopt
|
|
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
|
|
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
|
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
|
from freqtrade.optimize.space import SKDecimal
|
|
from freqtrade.strategy import IntParameter
|
|
from freqtrade.util import dt_utc
|
|
from tests.conftest import (
|
|
CURRENT_TEST_STRATEGY,
|
|
EXMS,
|
|
get_args,
|
|
get_markets,
|
|
log_has,
|
|
log_has_re,
|
|
patch_exchange,
|
|
patched_configuration_load_config_file,
|
|
)
|
|
|
|
|
|
def generate_result_metrics():
|
|
return {
|
|
"trade_count": 1,
|
|
"total_trades": 1,
|
|
"avg_profit": 0.1,
|
|
"total_profit": 0.001,
|
|
"profit": 0.01,
|
|
"duration": 20.0,
|
|
"wins": 1,
|
|
"draws": 0,
|
|
"losses": 0,
|
|
"profit_mean": 0.01,
|
|
"profit_total_abs": 0.001,
|
|
"profit_total": 0.01,
|
|
"holding_avg": timedelta(minutes=20),
|
|
"max_drawdown_account": 0.001,
|
|
"max_drawdown_abs": 0.001,
|
|
"loss": 0.001,
|
|
"is_initial_point": 0.001,
|
|
"is_random": False,
|
|
"is_best": 1,
|
|
}
|
|
|
|
|
|
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
"HyperoptableStrategy",
|
|
]
|
|
|
|
config = setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
|
|
assert "max_open_trades" in config
|
|
assert "stake_currency" in config
|
|
assert "stake_amount" in config
|
|
assert "exchange" in config
|
|
assert "pair_whitelist" in config["exchange"]
|
|
assert "datadir" in config
|
|
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
|
|
assert "timeframe" in config
|
|
|
|
assert "position_stacking" not in config
|
|
assert not log_has("Parameter --enable-position-stacking detected ...", caplog)
|
|
|
|
assert "timerange" not in config
|
|
assert "runmode" in config
|
|
assert config["runmode"] == RunMode.HYPEROPT
|
|
|
|
|
|
def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
mocker.patch("freqtrade.configuration.configuration.create_datadir", lambda c, x: x)
|
|
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
"HyperoptableStrategy",
|
|
"--datadir",
|
|
"/foo/bar",
|
|
"--timeframe",
|
|
"1m",
|
|
"--timerange",
|
|
":100",
|
|
"--enable-position-stacking",
|
|
"--disable-max-market-positions",
|
|
"--epochs",
|
|
"1000",
|
|
"--spaces",
|
|
"default",
|
|
"--print-all",
|
|
]
|
|
|
|
config = setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
|
|
assert "max_open_trades" in config
|
|
assert "stake_currency" in config
|
|
assert "stake_amount" in config
|
|
assert "exchange" in config
|
|
assert "pair_whitelist" in config["exchange"]
|
|
assert "datadir" in config
|
|
assert config["runmode"] == RunMode.HYPEROPT
|
|
|
|
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
|
|
assert "timeframe" in config
|
|
assert log_has("Parameter -i/--timeframe detected ... Using timeframe: 1m ...", caplog)
|
|
|
|
assert "position_stacking" in config
|
|
assert log_has("Parameter --enable-position-stacking detected ...", caplog)
|
|
|
|
assert "use_max_market_positions" in config
|
|
assert log_has("Parameter --disable-max-market-positions detected ...", caplog)
|
|
assert log_has("max_open_trades set to unlimited ...", caplog)
|
|
|
|
assert "timerange" in config
|
|
assert log_has("Parameter --timerange detected: {} ...".format(config["timerange"]), caplog)
|
|
|
|
assert "epochs" in config
|
|
assert log_has(
|
|
"Parameter --epochs detected ... Will run Hyperopt with for 1000 epochs ...", caplog
|
|
)
|
|
|
|
assert "spaces" in config
|
|
assert log_has("Parameter -s/--spaces detected: {}".format(config["spaces"]), caplog)
|
|
assert "print_all" in config
|
|
assert log_has("Parameter --print-all detected ...", caplog)
|
|
|
|
|
|
def test_setup_hyperopt_configuration_stake_amount(mocker, default_conf) -> None:
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
"HyperoptableStrategy",
|
|
"--stake-amount",
|
|
"1",
|
|
"--starting-balance",
|
|
"2",
|
|
]
|
|
conf = setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
|
|
assert isinstance(conf, dict)
|
|
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
CURRENT_TEST_STRATEGY,
|
|
"--stake-amount",
|
|
"1",
|
|
"--starting-balance",
|
|
"0.5",
|
|
]
|
|
with pytest.raises(OperationalException, match=r"Starting balance .* smaller .*"):
|
|
setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
|
|
|
|
|
|
def test_start_not_installed(mocker, default_conf, import_fails) -> None:
|
|
start_mock = MagicMock()
|
|
patched_configuration_load_config_file(mocker, default_conf)
|
|
|
|
mocker.patch("freqtrade.optimize.hyperopt.Hyperopt.start", start_mock)
|
|
patch_exchange(mocker)
|
|
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
"HyperoptableStrategy",
|
|
"--epochs",
|
|
"5",
|
|
"--hyperopt-loss",
|
|
"SharpeHyperOptLossDaily",
|
|
]
|
|
pargs = get_args(args)
|
|
|
|
with pytest.raises(OperationalException, match=r"Please ensure that the hyperopt dependencies"):
|
|
start_hyperopt(pargs)
|
|
|
|
|
|
def test_start_no_hyperopt_allowed(mocker, hyperopt_conf, caplog) -> None:
|
|
start_mock = MagicMock()
|
|
patched_configuration_load_config_file(mocker, hyperopt_conf)
|
|
mocker.patch("freqtrade.optimize.hyperopt.Hyperopt.start", start_mock)
|
|
patch_exchange(mocker)
|
|
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--hyperopt",
|
|
"HyperoptTestSepFile",
|
|
"--hyperopt-loss",
|
|
"SharpeHyperOptLossDaily",
|
|
"--epochs",
|
|
"5",
|
|
]
|
|
pargs = get_args(args)
|
|
with pytest.raises(OperationalException, match=r"Using separate Hyperopt files has been.*"):
|
|
start_hyperopt(pargs)
|
|
|
|
|
|
def test_start_no_data(mocker, hyperopt_conf, tmp_path) -> None:
|
|
hyperopt_conf["user_data_dir"] = tmp_path
|
|
patched_configuration_load_config_file(mocker, hyperopt_conf)
|
|
mocker.patch("freqtrade.data.history.load_pair_history", MagicMock(return_value=pd.DataFrame))
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
patch_exchange(mocker)
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
"HyperoptableStrategy",
|
|
"--hyperopt-loss",
|
|
"SharpeHyperOptLossDaily",
|
|
"--epochs",
|
|
"5",
|
|
]
|
|
pargs = get_args(args)
|
|
with pytest.raises(OperationalException, match="No data found. Terminating."):
|
|
start_hyperopt(pargs)
|
|
|
|
# Cleanup since that failed hyperopt start leaves a lockfile.
|
|
try:
|
|
Path(Hyperopt.get_lock_filename(hyperopt_conf)).unlink()
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def test_start_filelock(mocker, hyperopt_conf, caplog) -> None:
|
|
hyperopt_mock = MagicMock(side_effect=Timeout(Hyperopt.get_lock_filename(hyperopt_conf)))
|
|
patched_configuration_load_config_file(mocker, hyperopt_conf)
|
|
mocker.patch("freqtrade.optimize.hyperopt.Hyperopt.__init__", hyperopt_mock)
|
|
patch_exchange(mocker)
|
|
|
|
args = [
|
|
"hyperopt",
|
|
"--config",
|
|
"config.json",
|
|
"--strategy",
|
|
"HyperoptableStrategy",
|
|
"--hyperopt-loss",
|
|
"SharpeHyperOptLossDaily",
|
|
"--epochs",
|
|
"5",
|
|
]
|
|
pargs = get_args(args)
|
|
start_hyperopt(pargs)
|
|
assert log_has("Another running instance of freqtrade Hyperopt detected.", caplog)
|
|
|
|
|
|
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
|
|
hyperopt.current_best_loss = 2
|
|
hyperopt.total_epochs = 2
|
|
|
|
hyperopt.print_results(
|
|
{
|
|
"loss": 1,
|
|
"results_metrics": generate_result_metrics(),
|
|
"total_profit": 0,
|
|
"current_epoch": 2, # This starts from 1 (in a human-friendly manner)
|
|
"is_initial_point": False,
|
|
"is_random": False,
|
|
"is_best": True,
|
|
}
|
|
)
|
|
out, _err = capsys.readouterr()
|
|
assert all(
|
|
x in out for x in ["Best", "2/2", " 1", "0.10%", "0.00100000 BTC (1.00%)", "00:20:00"]
|
|
)
|
|
|
|
|
|
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
|
|
hyperopt.current_best_loss = 2
|
|
hyperopt.print_results(
|
|
{
|
|
"is_best": False,
|
|
"loss": 3,
|
|
"current_epoch": 1,
|
|
}
|
|
)
|
|
assert caplog.record_tuples == []
|
|
|
|
|
|
def test_roi_table_generation(hyperopt) -> None:
|
|
params = {
|
|
"roi_t1": 5,
|
|
"roi_t2": 10,
|
|
"roi_t3": 15,
|
|
"roi_p1": 1,
|
|
"roi_p2": 2,
|
|
"roi_p3": 3,
|
|
}
|
|
|
|
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
|
|
|
|
|
def test_params_no_optimize_details(hyperopt) -> None:
|
|
hyperopt.config["spaces"] = ["buy"]
|
|
res = hyperopt._get_no_optimize_details()
|
|
assert isinstance(res, dict)
|
|
assert "trailing" in res
|
|
assert res["trailing"]["trailing_stop"] is False
|
|
assert "roi" in res
|
|
assert res["roi"]["0"] == 0.04
|
|
assert "stoploss" in res
|
|
assert res["stoploss"]["stoploss"] == -0.1
|
|
assert "max_open_trades" in res
|
|
assert res["max_open_trades"]["max_open_trades"] == 1
|
|
|
|
|
|
def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
|
|
dumper = mocker.patch("freqtrade.optimize.hyperopt.dump")
|
|
dumper2 = mocker.patch("freqtrade.optimize.hyperopt.Hyperopt._save_result")
|
|
mocker.patch("freqtrade.optimize.hyperopt.calculate_market_change", return_value=1.5)
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
# Dummy-reduce points to ensure scikit-learn is forced to generate new values
|
|
mocker.patch("freqtrade.optimize.hyperopt.INITIAL_POINTS", 2)
|
|
|
|
parallel = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel",
|
|
MagicMock(
|
|
return_value=[
|
|
{
|
|
"loss": 1,
|
|
"results_explanation": "foo result",
|
|
"params": {"buy": {}, "sell": {}, "roi": {}, "stoploss": 0.0},
|
|
"results_metrics": generate_result_metrics(),
|
|
}
|
|
]
|
|
),
|
|
)
|
|
patch_exchange(mocker)
|
|
# Co-test loading timeframe from strategy
|
|
del hyperopt_conf["timeframe"]
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
hyperopt.start()
|
|
|
|
parallel.assert_called_once()
|
|
|
|
out, _err = capsys.readouterr()
|
|
assert "Best result:\n\n* 1/1: foo result Objective: 1.00000\n" in out
|
|
# Should be called for historical candle data
|
|
assert dumper.call_count == 1
|
|
assert dumper2.call_count == 1
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_entry")
|
|
assert hyperopt.backtesting.strategy.max_open_trades == hyperopt_conf["max_open_trades"]
|
|
assert hasattr(hyperopt.backtesting, "_position_stacking")
|
|
|
|
|
|
def test_hyperopt_format_results(hyperopt):
|
|
bt_result = {
|
|
"results": pd.DataFrame(
|
|
{
|
|
"pair": ["UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC"],
|
|
"profit_ratio": [0.003312, 0.010801, 0.013803, 0.002780],
|
|
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
|
|
"open_date": [
|
|
dt_utc(2017, 11, 14, 19, 32, 00),
|
|
dt_utc(2017, 11, 14, 21, 36, 00),
|
|
dt_utc(2017, 11, 14, 22, 12, 00),
|
|
dt_utc(2017, 11, 14, 22, 44, 00),
|
|
],
|
|
"close_date": [
|
|
dt_utc(2017, 11, 14, 21, 35, 00),
|
|
dt_utc(2017, 11, 14, 22, 10, 00),
|
|
dt_utc(2017, 11, 14, 22, 43, 00),
|
|
dt_utc(2017, 11, 14, 22, 58, 00),
|
|
],
|
|
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
|
|
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
|
|
"trade_duration": [123, 34, 31, 14],
|
|
"is_open": [False, False, False, True],
|
|
"is_short": [False, False, False, False],
|
|
"stake_amount": [0.01, 0.01, 0.01, 0.01],
|
|
"exit_reason": [
|
|
ExitType.ROI.value,
|
|
ExitType.STOP_LOSS.value,
|
|
ExitType.ROI.value,
|
|
ExitType.FORCE_EXIT.value,
|
|
],
|
|
}
|
|
),
|
|
"config": hyperopt.config,
|
|
"locks": [],
|
|
"final_balance": 0.02,
|
|
"rejected_signals": 2,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"backtest_start_time": 1619718665,
|
|
"backtest_end_time": 1619718665,
|
|
}
|
|
results_metrics = generate_strategy_stats(
|
|
["XRP/BTC"],
|
|
"",
|
|
bt_result,
|
|
dt_utc(2017, 11, 14, 19, 32, 00),
|
|
dt_utc(2017, 12, 14, 19, 32, 00),
|
|
market_change=0,
|
|
)
|
|
|
|
results_explanation = HyperoptTools.format_results_explanation_string(results_metrics, "BTC")
|
|
total_profit = results_metrics["profit_total_abs"]
|
|
|
|
results = {
|
|
"loss": 0.0,
|
|
"params_dict": None,
|
|
"params_details": None,
|
|
"results_metrics": results_metrics,
|
|
"results_explanation": results_explanation,
|
|
"total_profit": total_profit,
|
|
"current_epoch": 1,
|
|
"is_initial_point": True,
|
|
}
|
|
|
|
result = HyperoptTools._format_explanation_string(results, 1)
|
|
assert " 0.71%" in result
|
|
assert "Total profit 0.00003100 BTC" in result
|
|
assert "0:50:00 min" in result
|
|
|
|
|
|
def test_populate_indicators(hyperopt, testdatadir) -> None:
|
|
data = load_data(testdatadir, "1m", ["UNITTEST/BTC"], fill_up_missing=True)
|
|
dataframes = hyperopt.backtesting.strategy.advise_all_indicators(data)
|
|
dataframe = dataframes["UNITTEST/BTC"]
|
|
|
|
# Check if some indicators are generated. We will not test all of them
|
|
assert "adx" in dataframe
|
|
assert "macd" in dataframe
|
|
assert "rsi" in dataframe
|
|
|
|
|
|
def test_generate_optimizer(mocker, hyperopt_conf) -> None:
|
|
hyperopt_conf.update(
|
|
{
|
|
"spaces": "all",
|
|
"hyperopt_min_trades": 1,
|
|
}
|
|
)
|
|
|
|
backtest_result = {
|
|
"results": pd.DataFrame(
|
|
{
|
|
"pair": ["UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC"],
|
|
"profit_ratio": [0.003312, 0.010801, 0.013803, 0.002780],
|
|
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
|
|
"open_date": [
|
|
dt_utc(2017, 11, 14, 19, 32, 00),
|
|
dt_utc(2017, 11, 14, 21, 36, 00),
|
|
dt_utc(2017, 11, 14, 22, 12, 00),
|
|
dt_utc(2017, 11, 14, 22, 44, 00),
|
|
],
|
|
"close_date": [
|
|
dt_utc(2017, 11, 14, 21, 35, 00),
|
|
dt_utc(2017, 11, 14, 22, 10, 00),
|
|
dt_utc(2017, 11, 14, 22, 43, 00),
|
|
dt_utc(2017, 11, 14, 22, 58, 00),
|
|
],
|
|
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
|
|
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
|
|
"trade_duration": [123, 34, 31, 14],
|
|
"is_open": [False, False, False, True],
|
|
"is_short": [False, False, False, False],
|
|
"stake_amount": [0.01, 0.01, 0.01, 0.01],
|
|
"exit_reason": [
|
|
ExitType.ROI.value,
|
|
ExitType.STOP_LOSS.value,
|
|
ExitType.ROI.value,
|
|
ExitType.FORCE_EXIT.value,
|
|
],
|
|
}
|
|
),
|
|
"config": hyperopt_conf,
|
|
"locks": [],
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"final_balance": 1000,
|
|
}
|
|
|
|
mocker.patch("freqtrade.optimize.hyperopt.Backtesting.backtest", return_value=backtest_result)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
return_value=(dt_utc(2017, 12, 10), dt_utc(2017, 12, 13)),
|
|
)
|
|
patch_exchange(mocker)
|
|
mocker.patch.object(Path, "open")
|
|
mocker.patch("freqtrade.configuration.config_validation.validate_config_schema")
|
|
mocker.patch("freqtrade.optimize.hyperopt.load", return_value={"XRP/BTC": None})
|
|
|
|
optimizer_param = {
|
|
"buy_plusdi": 0.02,
|
|
"buy_rsi": 35,
|
|
"sell_minusdi": 0.02,
|
|
"sell_rsi": 75,
|
|
"protection_cooldown_lookback": 20,
|
|
"protection_enabled": True,
|
|
"roi_t1": 60.0,
|
|
"roi_t2": 30.0,
|
|
"roi_t3": 20.0,
|
|
"roi_p1": 0.01,
|
|
"roi_p2": 0.01,
|
|
"roi_p3": 0.1,
|
|
"stoploss": -0.4,
|
|
"trailing_stop": True,
|
|
"trailing_stop_positive": 0.02,
|
|
"trailing_stop_positive_offset_p1": 0.05,
|
|
"trailing_only_offset_is_reached": False,
|
|
"max_open_trades": 3,
|
|
}
|
|
response_expected = {
|
|
"loss": 1.9147239021396234,
|
|
"results_explanation": (
|
|
" 4 trades. 4/0/0 Wins/Draws/Losses. "
|
|
"Avg profit 0.77%. Median profit 0.71%. Total profit "
|
|
"0.00003100 BTC ( 0.00%). "
|
|
"Avg duration 0:50:00 min."
|
|
),
|
|
"params_details": {
|
|
"buy": {
|
|
"buy_plusdi": 0.02,
|
|
"buy_rsi": 35,
|
|
},
|
|
"roi": {"0": 0.12000000000000001, "20.0": 0.02, "50.0": 0.01, "110.0": 0},
|
|
"protection": {
|
|
"protection_cooldown_lookback": 20,
|
|
"protection_enabled": True,
|
|
},
|
|
"sell": {
|
|
"sell_minusdi": 0.02,
|
|
"sell_rsi": 75,
|
|
},
|
|
"stoploss": {"stoploss": -0.4},
|
|
"trailing": {
|
|
"trailing_only_offset_is_reached": False,
|
|
"trailing_stop": True,
|
|
"trailing_stop_positive": 0.02,
|
|
"trailing_stop_positive_offset": 0.07,
|
|
},
|
|
"max_open_trades": {"max_open_trades": 3},
|
|
},
|
|
"params_dict": optimizer_param,
|
|
"params_not_optimized": {"buy": {}, "protection": {}, "sell": {}},
|
|
"results_metrics": ANY,
|
|
"total_profit": 3.1e-08,
|
|
}
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.min_date = dt_utc(2017, 12, 10)
|
|
hyperopt.max_date = dt_utc(2017, 12, 13)
|
|
hyperopt.init_spaces()
|
|
generate_optimizer_value = hyperopt.generate_optimizer(list(optimizer_param.values()))
|
|
assert generate_optimizer_value == response_expected
|
|
|
|
|
|
def test_clean_hyperopt(mocker, hyperopt_conf, caplog):
|
|
patch_exchange(mocker)
|
|
|
|
mocker.patch(
|
|
"freqtrade.strategy.hyper.HyperStrategyMixin.load_params_from_file",
|
|
MagicMock(return_value={}),
|
|
)
|
|
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
|
|
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
|
|
h = Hyperopt(hyperopt_conf)
|
|
|
|
assert unlinkmock.call_count == 2
|
|
assert log_has(f"Removing `{h.data_pickle_file}`.", caplog)
|
|
|
|
|
|
def test_print_json_spaces_all(mocker, hyperopt_conf, capsys) -> None:
|
|
dumper = mocker.patch("freqtrade.optimize.hyperopt.dump")
|
|
dumper2 = mocker.patch("freqtrade.optimize.hyperopt.Hyperopt._save_result")
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch("freqtrade.optimize.hyperopt.calculate_market_change", return_value=1.5)
|
|
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
parallel = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel",
|
|
MagicMock(
|
|
return_value=[
|
|
{
|
|
"loss": 1,
|
|
"results_explanation": "foo result",
|
|
"params": {},
|
|
"params_details": {
|
|
"buy": {"mfi-value": None},
|
|
"sell": {"sell-mfi-value": None},
|
|
"roi": {},
|
|
"stoploss": {"stoploss": None},
|
|
"trailing": {"trailing_stop": None},
|
|
"max_open_trades": {"max_open_trades": None},
|
|
},
|
|
"results_metrics": generate_result_metrics(),
|
|
}
|
|
]
|
|
),
|
|
)
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update(
|
|
{
|
|
"spaces": "all",
|
|
"hyperopt_jobs": 1,
|
|
"print_json": True,
|
|
}
|
|
)
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
hyperopt.start()
|
|
|
|
parallel.assert_called_once()
|
|
|
|
out, _err = capsys.readouterr()
|
|
result_str = (
|
|
'{"params":{"mfi-value":null,"sell-mfi-value":null},"minimal_roi"'
|
|
':{},"stoploss":null,"trailing_stop":null,"max_open_trades":null}'
|
|
)
|
|
assert result_str in out # noqa: E501
|
|
# Should be called for historical candle data
|
|
assert dumper.call_count == 1
|
|
assert dumper2.call_count == 1
|
|
|
|
|
|
def test_print_json_spaces_default(mocker, hyperopt_conf, capsys) -> None:
|
|
dumper = mocker.patch("freqtrade.optimize.hyperopt.dump")
|
|
dumper2 = mocker.patch("freqtrade.optimize.hyperopt.Hyperopt._save_result")
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch("freqtrade.optimize.hyperopt.calculate_market_change", return_value=1.5)
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
parallel = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel",
|
|
MagicMock(
|
|
return_value=[
|
|
{
|
|
"loss": 1,
|
|
"results_explanation": "foo result",
|
|
"params": {},
|
|
"params_details": {
|
|
"buy": {"mfi-value": None},
|
|
"sell": {"sell-mfi-value": None},
|
|
"roi": {},
|
|
"stoploss": {"stoploss": None},
|
|
},
|
|
"results_metrics": generate_result_metrics(),
|
|
}
|
|
]
|
|
),
|
|
)
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update({"print_json": True})
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
hyperopt.start()
|
|
|
|
parallel.assert_called_once()
|
|
|
|
out, _err = capsys.readouterr()
|
|
assert (
|
|
'{"params":{"mfi-value":null,"sell-mfi-value":null},"minimal_roi":{},"stoploss":null}'
|
|
in out
|
|
) # noqa: E501
|
|
# Should be called for historical candle data
|
|
assert dumper.call_count == 1
|
|
assert dumper2.call_count == 1
|
|
|
|
|
|
def test_print_json_spaces_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
|
|
dumper = mocker.patch("freqtrade.optimize.hyperopt.dump")
|
|
dumper2 = mocker.patch("freqtrade.optimize.hyperopt.Hyperopt._save_result")
|
|
mocker.patch("freqtrade.optimize.hyperopt.calculate_market_change", return_value=1.5)
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
parallel = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel",
|
|
MagicMock(
|
|
return_value=[
|
|
{
|
|
"loss": 1,
|
|
"results_explanation": "foo result",
|
|
"params": {},
|
|
"params_details": {"roi": {}, "stoploss": {"stoploss": None}},
|
|
"results_metrics": generate_result_metrics(),
|
|
}
|
|
]
|
|
),
|
|
)
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update(
|
|
{
|
|
"spaces": "roi stoploss",
|
|
"hyperopt_jobs": 1,
|
|
"print_json": True,
|
|
}
|
|
)
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
hyperopt.start()
|
|
|
|
parallel.assert_called_once()
|
|
|
|
out, _err = capsys.readouterr()
|
|
assert '{"minimal_roi":{},"stoploss":null}' in out
|
|
|
|
assert dumper.call_count == 1
|
|
assert dumper2.call_count == 1
|
|
|
|
|
|
def test_simplified_interface_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
|
|
dumper = mocker.patch("freqtrade.optimize.hyperopt.dump")
|
|
dumper2 = mocker.patch("freqtrade.optimize.hyperopt.Hyperopt._save_result")
|
|
mocker.patch("freqtrade.optimize.hyperopt.calculate_market_change", return_value=1.5)
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
parallel = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel",
|
|
MagicMock(
|
|
return_value=[
|
|
{
|
|
"loss": 1,
|
|
"results_explanation": "foo result",
|
|
"params": {"stoploss": 0.0},
|
|
"results_metrics": generate_result_metrics(),
|
|
}
|
|
]
|
|
),
|
|
)
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update({"spaces": "roi stoploss"})
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
hyperopt.start()
|
|
|
|
parallel.assert_called_once()
|
|
|
|
out, _err = capsys.readouterr()
|
|
assert "Best result:\n\n* 1/1: foo result Objective: 1.00000\n" in out
|
|
assert dumper.call_count == 1
|
|
assert dumper2.call_count == 1
|
|
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_entry")
|
|
assert hyperopt.backtesting.strategy.max_open_trades == hyperopt_conf["max_open_trades"]
|
|
assert hasattr(hyperopt.backtesting, "_position_stacking")
|
|
|
|
|
|
def test_simplified_interface_all_failed(mocker, hyperopt_conf, caplog) -> None:
|
|
mocker.patch("freqtrade.optimize.hyperopt.dump", MagicMock())
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update(
|
|
{
|
|
"spaces": "all",
|
|
}
|
|
)
|
|
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt_auto.HyperOptAuto._generate_indicator_space", return_value=[]
|
|
)
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
with pytest.raises(OperationalException, match=r"The 'protection' space is included into *"):
|
|
hyperopt.init_spaces()
|
|
|
|
hyperopt.config["hyperopt_ignore_missing_space"] = True
|
|
caplog.clear()
|
|
hyperopt.init_spaces()
|
|
assert log_has_re(r"The 'protection' space is included into *", caplog)
|
|
assert hyperopt.protection_space == []
|
|
|
|
|
|
def test_simplified_interface_buy(mocker, hyperopt_conf, capsys) -> None:
|
|
dumper = mocker.patch("freqtrade.optimize.hyperopt.dump")
|
|
dumper2 = mocker.patch("freqtrade.optimize.hyperopt.Hyperopt._save_result")
|
|
mocker.patch("freqtrade.optimize.hyperopt.calculate_market_change", return_value=1.5)
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
parallel = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel",
|
|
MagicMock(
|
|
return_value=[
|
|
{
|
|
"loss": 1,
|
|
"results_explanation": "foo result",
|
|
"params": {},
|
|
"results_metrics": generate_result_metrics(),
|
|
}
|
|
]
|
|
),
|
|
)
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update({"spaces": "buy"})
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
hyperopt.start()
|
|
|
|
parallel.assert_called_once()
|
|
|
|
out, _err = capsys.readouterr()
|
|
assert "Best result:\n\n* 1/1: foo result Objective: 1.00000\n" in out
|
|
assert dumper.called
|
|
assert dumper.call_count == 1
|
|
assert dumper2.call_count == 1
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_entry")
|
|
assert hyperopt.backtesting.strategy.max_open_trades == hyperopt_conf["max_open_trades"]
|
|
assert hasattr(hyperopt.backtesting, "_position_stacking")
|
|
|
|
|
|
def test_simplified_interface_sell(mocker, hyperopt_conf, capsys) -> None:
|
|
dumper = mocker.patch("freqtrade.optimize.hyperopt.dump")
|
|
dumper2 = mocker.patch("freqtrade.optimize.hyperopt.Hyperopt._save_result")
|
|
mocker.patch("freqtrade.optimize.hyperopt.calculate_market_change", return_value=1.5)
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
|
|
parallel = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel",
|
|
MagicMock(
|
|
return_value=[
|
|
{
|
|
"loss": 1,
|
|
"results_explanation": "foo result",
|
|
"params": {},
|
|
"results_metrics": generate_result_metrics(),
|
|
}
|
|
]
|
|
),
|
|
)
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update(
|
|
{
|
|
"spaces": "sell",
|
|
}
|
|
)
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
hyperopt.start()
|
|
|
|
parallel.assert_called_once()
|
|
|
|
out, _err = capsys.readouterr()
|
|
assert "Best result:\n\n* 1/1: foo result Objective: 1.00000\n" in out
|
|
assert dumper.called
|
|
assert dumper.call_count == 1
|
|
assert dumper2.call_count == 1
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_exit")
|
|
assert hasattr(hyperopt.backtesting.strategy, "advise_entry")
|
|
assert hyperopt.backtesting.strategy.max_open_trades == hyperopt_conf["max_open_trades"]
|
|
assert hasattr(hyperopt.backtesting, "_position_stacking")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"space",
|
|
[
|
|
("buy"),
|
|
("sell"),
|
|
("protection"),
|
|
],
|
|
)
|
|
def test_simplified_interface_failed(mocker, hyperopt_conf, space) -> None:
|
|
mocker.patch("freqtrade.optimize.hyperopt.dump", MagicMock())
|
|
mocker.patch("freqtrade.optimize.hyperopt.file_dump_json")
|
|
mocker.patch(
|
|
"freqtrade.optimize.backtesting.Backtesting.load_bt_data",
|
|
MagicMock(return_value=(MagicMock(), None)),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.get_timerange",
|
|
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13))),
|
|
)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt_auto.HyperOptAuto._generate_indicator_space", return_value=[]
|
|
)
|
|
|
|
patch_exchange(mocker)
|
|
|
|
hyperopt_conf.update({"spaces": space})
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
|
|
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
|
|
|
|
with pytest.raises(OperationalException, match=f"The '{space}' space is included into *"):
|
|
hyperopt.start()
|
|
|
|
|
|
def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmp_path, fee) -> None:
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
# Dummy-reduce points to ensure scikit-learn is forced to generate new values
|
|
mocker.patch("freqtrade.optimize.hyperopt.INITIAL_POINTS", 2)
|
|
(tmp_path / "hyperopt_results").mkdir(parents=True)
|
|
# No hyperopt needed
|
|
hyperopt_conf.update(
|
|
{
|
|
"strategy": "HyperoptableStrategy",
|
|
"user_data_dir": tmp_path,
|
|
"hyperopt_random_state": 42,
|
|
"spaces": ["all"],
|
|
}
|
|
)
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.exchange.get_max_leverage = MagicMock(return_value=1.0)
|
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
|
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)
|
|
assert hyperopt.backtesting.strategy.bot_started is True
|
|
assert hyperopt.backtesting.strategy.bot_loop_started is False
|
|
|
|
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
|
|
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
|
|
assert hyperopt.backtesting.strategy.sell_rsi.value == 74
|
|
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30
|
|
assert hyperopt.backtesting.strategy.max_open_trades == 1
|
|
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
|
|
assert isinstance(buy_rsi_range, range)
|
|
# Range from 0 - 50 (inclusive)
|
|
assert len(list(buy_rsi_range)) == 51
|
|
|
|
hyperopt.start()
|
|
# All values should've changed.
|
|
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value != 30
|
|
assert hyperopt.backtesting.strategy.buy_rsi.value != 35
|
|
assert hyperopt.backtesting.strategy.sell_rsi.value != 74
|
|
assert hyperopt.backtesting.strategy.max_open_trades != 1
|
|
|
|
hyperopt.custom_hyperopt.generate_estimator = lambda *args, **kwargs: "ET1"
|
|
with pytest.raises(OperationalException, match="Estimator ET1 not supported."):
|
|
hyperopt.get_optimizer([], 2)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
|
|
def test_in_strategy_auto_hyperopt_with_parallel(mocker, hyperopt_conf, tmp_path, fee) -> None:
|
|
mocker.patch(f"{EXMS}.validate_config", MagicMock())
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
mocker.patch(f"{EXMS}.reload_markets")
|
|
mocker.patch(f"{EXMS}.markets", PropertyMock(return_value=get_markets()))
|
|
(tmp_path / "hyperopt_results").mkdir(parents=True)
|
|
# Dummy-reduce points to ensure scikit-learn is forced to generate new values
|
|
mocker.patch("freqtrade.optimize.hyperopt.INITIAL_POINTS", 2)
|
|
# No hyperopt needed
|
|
hyperopt_conf.update(
|
|
{
|
|
"strategy": "HyperoptableStrategy",
|
|
"user_data_dir": tmp_path,
|
|
"hyperopt_random_state": 42,
|
|
"spaces": ["all"],
|
|
# Enforce parallelity
|
|
"epochs": 2,
|
|
"hyperopt_jobs": 2,
|
|
"fee": fee.return_value,
|
|
}
|
|
)
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.exchange.get_max_leverage = lambda *x, **xx: 1.0
|
|
hyperopt.backtesting.exchange.get_min_pair_stake_amount = lambda *x, **xx: 0.00001
|
|
hyperopt.backtesting.exchange.get_max_pair_stake_amount = lambda *x, **xx: 100.0
|
|
hyperopt.backtesting.exchange._markets = get_markets()
|
|
|
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
|
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)
|
|
assert hyperopt.backtesting.strategy.bot_started is True
|
|
assert hyperopt.backtesting.strategy.bot_loop_started is False
|
|
|
|
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
|
|
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
|
|
assert hyperopt.backtesting.strategy.sell_rsi.value == 74
|
|
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30
|
|
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
|
|
assert isinstance(buy_rsi_range, range)
|
|
# Range from 0 - 50 (inclusive)
|
|
assert len(list(buy_rsi_range)) == 51
|
|
|
|
hyperopt.start()
|
|
|
|
|
|
def test_in_strategy_auto_hyperopt_per_epoch(mocker, hyperopt_conf, tmp_path, fee) -> None:
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
(tmp_path / "hyperopt_results").mkdir(parents=True)
|
|
|
|
hyperopt_conf.update(
|
|
{
|
|
"strategy": "HyperoptableStrategy",
|
|
"user_data_dir": tmp_path,
|
|
"hyperopt_random_state": 42,
|
|
"spaces": ["all"],
|
|
"epochs": 3,
|
|
"analyze_per_epoch": True,
|
|
}
|
|
)
|
|
go = mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt.generate_optimizer",
|
|
return_value={
|
|
"loss": 0.05,
|
|
"results_explanation": "foo result",
|
|
"params": {},
|
|
"results_metrics": generate_result_metrics(),
|
|
},
|
|
)
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
hyperopt.backtesting.exchange.get_max_leverage = MagicMock(return_value=1.0)
|
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
|
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)
|
|
assert hyperopt.backtesting.strategy.bot_loop_started is False
|
|
assert hyperopt.backtesting.strategy.bot_started is True
|
|
|
|
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
|
|
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
|
|
assert hyperopt.backtesting.strategy.sell_rsi.value == 74
|
|
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30
|
|
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
|
|
assert isinstance(buy_rsi_range, range)
|
|
# Range from 0 - 50 (inclusive)
|
|
assert len(list(buy_rsi_range)) == 51
|
|
|
|
hyperopt.start()
|
|
# backtesting should be called 3 times (once per epoch)
|
|
assert go.call_count == 3
|
|
|
|
|
|
def test_SKDecimal():
|
|
space = SKDecimal(1, 2, decimals=2)
|
|
assert 1.5 in space
|
|
assert 2.5 not in space
|
|
assert space.low == 100
|
|
assert space.high == 200
|
|
|
|
assert space.inverse_transform([200]) == [2.0]
|
|
assert space.inverse_transform([100]) == [1.0]
|
|
assert space.inverse_transform([150, 160]) == [1.5, 1.6]
|
|
|
|
assert space.transform([1.5]) == [150]
|
|
assert space.transform([2.0]) == [200]
|
|
assert space.transform([1.0]) == [100]
|
|
assert space.transform([1.5, 1.6]) == [150, 160]
|
|
|
|
|
|
def test_stake_amount_unlimited_max_open_trades(mocker, hyperopt_conf, tmp_path, fee) -> None:
|
|
# This test is to ensure that unlimited max_open_trades are ignored for the backtesting
|
|
# if we have an unlimited stake amount
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
(tmp_path / "hyperopt_results").mkdir(parents=True)
|
|
hyperopt_conf.update(
|
|
{
|
|
"strategy": "HyperoptableStrategy",
|
|
"user_data_dir": tmp_path,
|
|
"hyperopt_random_state": 42,
|
|
"spaces": ["trades"],
|
|
"stake_amount": "unlimited",
|
|
}
|
|
)
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt._get_params_dict",
|
|
return_value={"max_open_trades": -1},
|
|
)
|
|
|
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
|
|
|
assert hyperopt.backtesting.strategy.max_open_trades == 1
|
|
|
|
hyperopt.start()
|
|
|
|
assert hyperopt.backtesting.strategy.max_open_trades == 1
|
|
|
|
|
|
def test_max_open_trades_dump(mocker, hyperopt_conf, tmp_path, fee, capsys) -> None:
|
|
# This test is to ensure that after hyperopting, max_open_trades is never
|
|
# saved as inf in the output json params
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_fee", fee)
|
|
(tmp_path / "hyperopt_results").mkdir(parents=True)
|
|
hyperopt_conf.update(
|
|
{
|
|
"strategy": "HyperoptableStrategy",
|
|
"user_data_dir": tmp_path,
|
|
"hyperopt_random_state": 42,
|
|
"spaces": ["trades"],
|
|
}
|
|
)
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt._get_params_dict",
|
|
return_value={"max_open_trades": -1},
|
|
)
|
|
|
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
|
|
|
hyperopt.start()
|
|
|
|
out, _err = capsys.readouterr()
|
|
|
|
assert "max_open_trades = -1" in out
|
|
assert "max_open_trades = inf" not in out
|
|
|
|
##############
|
|
|
|
hyperopt_conf.update({"print_json": True})
|
|
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
mocker.patch(
|
|
"freqtrade.optimize.hyperopt.Hyperopt._get_params_dict",
|
|
return_value={"max_open_trades": -1},
|
|
)
|
|
|
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
|
|
|
hyperopt.start()
|
|
|
|
out, _err = capsys.readouterr()
|
|
|
|
assert '"max_open_trades":-1' in out
|
|
|
|
|
|
def test_max_open_trades_consistency(mocker, hyperopt_conf, tmp_path, fee) -> None:
|
|
# This test is to ensure that max_open_trades is the same across all functions needing it
|
|
# after it has been changed from the hyperopt
|
|
patch_exchange(mocker)
|
|
mocker.patch(f"{EXMS}.get_fee", return_value=0)
|
|
|
|
(tmp_path / "hyperopt_results").mkdir(parents=True)
|
|
hyperopt_conf.update(
|
|
{
|
|
"strategy": "HyperoptableStrategy",
|
|
"user_data_dir": tmp_path,
|
|
"hyperopt_random_state": 42,
|
|
"spaces": ["trades"],
|
|
"stake_amount": "unlimited",
|
|
"dry_run_wallet": 8,
|
|
"available_capital": 8,
|
|
"dry_run": True,
|
|
"epochs": 1,
|
|
}
|
|
)
|
|
hyperopt = Hyperopt(hyperopt_conf)
|
|
|
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
|
|
|
hyperopt.custom_hyperopt.max_open_trades_space = lambda: [
|
|
Integer(1, 10, name="max_open_trades")
|
|
]
|
|
|
|
first_time_evaluated = False
|
|
|
|
def stake_amount_interceptor(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
nonlocal first_time_evaluated
|
|
stake_amount = func(*args, **kwargs)
|
|
if first_time_evaluated is False:
|
|
assert stake_amount == 1
|
|
first_time_evaluated = True
|
|
return stake_amount
|
|
|
|
return wrapper
|
|
|
|
hyperopt.backtesting.wallets._calculate_unlimited_stake_amount = stake_amount_interceptor(
|
|
hyperopt.backtesting.wallets._calculate_unlimited_stake_amount
|
|
)
|
|
|
|
hyperopt.start()
|
|
|
|
assert hyperopt.backtesting.strategy.max_open_trades == 8
|
|
assert hyperopt.config["max_open_trades"] == 8
|