mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-15 04:33:57 +00:00
1476 lines
55 KiB
HTML
1476 lines
55 KiB
HTML
|
|
<!doctype html>
|
|
<html lang="en" class="no-js">
|
|
<head>
|
|
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width,initial-scale=1">
|
|
|
|
|
|
|
|
|
|
<link rel="prev" href="../backtesting/">
|
|
|
|
|
|
<link rel="next" href="../edge/">
|
|
|
|
|
|
<link rel="icon" href="../assets/images/favicon.png">
|
|
<meta name="generator" content="mkdocs-1.6.0, mkdocs-material-9.5.30">
|
|
|
|
|
|
|
|
<title>Hyperopt - Freqtrade</title>
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../assets/stylesheets/main.3cba04c6.min.css">
|
|
|
|
|
|
<link rel="stylesheet" href="../assets/stylesheets/palette.06af60db.min.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
|
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
|
|
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
|
|
|
|
|
|
|
|
<script>__md_scope=new URL("..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</head>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="blue-grey" data-md-color-accent="tear">
|
|
|
|
|
|
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
|
|
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
|
|
<label class="md-overlay" for="__drawer"></label>
|
|
<div data-md-component="skip">
|
|
|
|
|
|
<a href="#hyperopt" class="md-skip">
|
|
Skip to content
|
|
</a>
|
|
|
|
</div>
|
|
<div data-md-component="announce">
|
|
|
|
</div>
|
|
|
|
<div data-md-color-scheme="default" data-md-component="outdated" hidden>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<header class="md-header md-header--shadow" data-md-component="header">
|
|
<nav class="md-header__inner md-grid" aria-label="Header">
|
|
<a href=".." title="Freqtrade" class="md-header__button md-logo" aria-label="Freqtrade" data-md-component="logo">
|
|
|
|
<img src="../images/logo.png" alt="logo">
|
|
|
|
</a>
|
|
<label class="md-header__button md-icon" for="__drawer">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
|
|
</label>
|
|
<div class="md-header__title" data-md-component="header-title">
|
|
<div class="md-header__ellipsis">
|
|
<div class="md-header__topic">
|
|
<span class="md-ellipsis">
|
|
Freqtrade
|
|
</span>
|
|
</div>
|
|
<div class="md-header__topic" data-md-component="header-topic">
|
|
<span class="md-ellipsis">
|
|
|
|
Hyperopt
|
|
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-header__button md-icon" for="__search">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
</label>
|
|
<div class="md-search" data-md-component="search" role="dialog">
|
|
<label class="md-search__overlay" for="__search"></label>
|
|
<div class="md-search__inner" role="search">
|
|
<form class="md-search__form" name="search">
|
|
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
|
|
<label class="md-search__icon md-icon" for="__search">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
|
</label>
|
|
<nav class="md-search__options" aria-label="Search">
|
|
|
|
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
|
</button>
|
|
</nav>
|
|
|
|
</form>
|
|
<div class="md-search__output">
|
|
<div class="md-search__scrollwrap" tabindex="0" data-md-scrollfix>
|
|
<div class="md-search-result" data-md-component="search-result">
|
|
<div class="md-search-result__meta">
|
|
Initializing search
|
|
</div>
|
|
<ol class="md-search-result__list" role="presentation"></ol>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</nav>
|
|
|
|
</header>
|
|
|
|
<div class="md-container" data-md-component="container">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<main class="md-main" data-md-component="main">
|
|
<div class="md-main__inner md-grid">
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
|
|
<div class="md-sidebar__scrollwrap">
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
|
|
<label class="md-nav__title" for="__drawer">
|
|
<a href=".." title="Freqtrade" class="md-nav__button md-logo" aria-label="Freqtrade" data-md-component="logo">
|
|
|
|
<img src="../images/logo.png" alt="logo">
|
|
|
|
</a>
|
|
Freqtrade
|
|
</label>
|
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href=".." class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
About
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../installation/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Installation
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../docker/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Installation Docker
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../configuration/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Configuration
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../strategy-customization/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Strategy Customization
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../stoploss/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Stoploss
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../bot-usage/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Start the bot
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
|
|
|
|
|
|
<label class="md-nav__link" for="__nav_8" id="__nav_8_label" tabindex="0">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Control the bot
|
|
</span>
|
|
|
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_8">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Control the bot
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../telegram-usage/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Telegram
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../webhook-config/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Web Hook
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../rest-api/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
REST API
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../backtesting/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Backtesting
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--active">
|
|
|
|
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__link md-nav__link--active" for="__toc">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Hyperopt
|
|
</span>
|
|
|
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
<a href="./" class="md-nav__link md-nav__link--active">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Hyperopt
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Table of contents
|
|
</label>
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#prepare-hyperopting" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Prepare Hyperopting
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Prepare Hyperopting">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#checklist-on-all-tasks-possibilities-in-hyperopt" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Checklist on all tasks / possibilities in hyperopt
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#1-install-a-custom-hyperopt-file" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
1. Install a Custom Hyperopt File
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#2-configure-your-guards-and-triggers" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
2. Configure your Guards and Triggers
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="2. Configure your Guards and Triggers">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#sell-optimization" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Sell optimization
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#using-ticker-interval-as-part-of-the-strategy" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Using ticker-interval as part of the Strategy
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#solving-a-mystery" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Solving a Mystery
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#loss-functions" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Loss-functions
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Loss-functions">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#creating-and-using-a-custom-loss-function" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Creating and using a custom loss function
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#execute-hyperopt" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Execute Hyperopt
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Execute Hyperopt">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#execute-hyperopt-with-different-ticker-data-source" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Execute Hyperopt with Different Ticker-Data Source
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#running-hyperopt-with-smaller-testset" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Running Hyperopt with Smaller Testset
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#running-hyperopt-with-smaller-search-space" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Running Hyperopt with Smaller Search Space
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#position-stacking-and-disabling-max-market-positions" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Position stacking and disabling max market positions
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#understand-the-hyperopt-result" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Understand the Hyperopt Result
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Understand the Hyperopt Result">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#understand-hyperopt-roi-results" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Understand Hyperopt ROI results
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#validate-backtesting-results" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Validate backtesting results
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#next-step" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Next Step
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../edge/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Edge positioning
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../plotting/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Plotting
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../deprecated/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Deprecated features
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../faq/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
FAQ
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../data-analysis/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Data Analysis
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../sql_cheatsheet/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
SQL Cheatsheet
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../sandbox-testing/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Sandbox testing
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../developer/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
Contributors guide
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
|
|
<div class="md-sidebar__scrollwrap">
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Table of contents
|
|
</label>
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#prepare-hyperopting" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Prepare Hyperopting
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Prepare Hyperopting">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#checklist-on-all-tasks-possibilities-in-hyperopt" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Checklist on all tasks / possibilities in hyperopt
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#1-install-a-custom-hyperopt-file" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
1. Install a Custom Hyperopt File
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#2-configure-your-guards-and-triggers" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
2. Configure your Guards and Triggers
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="2. Configure your Guards and Triggers">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#sell-optimization" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Sell optimization
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#using-ticker-interval-as-part-of-the-strategy" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Using ticker-interval as part of the Strategy
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#solving-a-mystery" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Solving a Mystery
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#loss-functions" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Loss-functions
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Loss-functions">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#creating-and-using-a-custom-loss-function" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Creating and using a custom loss function
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#execute-hyperopt" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Execute Hyperopt
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Execute Hyperopt">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#execute-hyperopt-with-different-ticker-data-source" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Execute Hyperopt with Different Ticker-Data Source
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#running-hyperopt-with-smaller-testset" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Running Hyperopt with Smaller Testset
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#running-hyperopt-with-smaller-search-space" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Running Hyperopt with Smaller Search Space
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#position-stacking-and-disabling-max-market-positions" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Position stacking and disabling max market positions
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#understand-the-hyperopt-result" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Understand the Hyperopt Result
|
|
</span>
|
|
</a>
|
|
|
|
<nav class="md-nav" aria-label="Understand the Hyperopt Result">
|
|
<ul class="md-nav__list">
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#understand-hyperopt-roi-results" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Understand Hyperopt ROI results
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#validate-backtesting-results" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Validate backtesting results
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#next-step" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
Next Step
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="md-content" data-md-component="content">
|
|
<article class="md-content__inner md-typeset">
|
|
|
|
|
|
|
|
|
|
<h1 id="hyperopt">Hyperopt<a class="headerlink" href="#hyperopt" title="Permanent link">¶</a></h1>
|
|
<p>This page explains how to tune your strategy by finding the optimal
|
|
parameters, a process called hyperparameter optimization. The bot uses several
|
|
algorithms included in the <code>scikit-optimize</code> package to accomplish this. The
|
|
search will burn all your CPU cores, make your laptop sound like a fighter jet
|
|
and still take a long time.</p>
|
|
<div class="admonition bug">
|
|
<p class="admonition-title">Bug</p>
|
|
<p>Hyperopt will crash when used with only 1 CPU Core as found out in <a href="https://github.com/freqtrade/freqtrade/issues/1133">Issue #1133</a></p>
|
|
</div>
|
|
<h2 id="prepare-hyperopting">Prepare Hyperopting<a class="headerlink" href="#prepare-hyperopting" title="Permanent link">¶</a></h2>
|
|
<p>Before we start digging into Hyperopt, we recommend you to take a look at
|
|
an example hyperopt file located into <a href="https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt.py">user_data/hyperopts/</a></p>
|
|
<p>Configuring hyperopt is similar to writing your own strategy, and many tasks will be similar and a lot of code can be copied across from the strategy.</p>
|
|
<h3 id="checklist-on-all-tasks-possibilities-in-hyperopt">Checklist on all tasks / possibilities in hyperopt<a class="headerlink" href="#checklist-on-all-tasks-possibilities-in-hyperopt" title="Permanent link">¶</a></h3>
|
|
<p>Depending on the space you want to optimize, only some of the below are required.</p>
|
|
<ul>
|
|
<li>fill <code>populate_indicators</code> - probably a copy from your strategy</li>
|
|
<li>fill <code>buy_strategy_generator</code> - for buy signal optimization</li>
|
|
<li>fill <code>indicator_space</code> - for buy signal optimzation</li>
|
|
<li>fill <code>sell_strategy_generator</code> - for sell signal optimization</li>
|
|
<li>fill <code>sell_indicator_space</code> - for sell signal optimzation</li>
|
|
<li>fill <code>roi_space</code> - for ROI optimization</li>
|
|
<li>fill <code>generate_roi_table</code> - for ROI optimization (if you need more than 3 entries)</li>
|
|
<li>fill <code>stoploss_space</code> - stoploss optimization</li>
|
|
<li>Optional but recommended</li>
|
|
<li>copy <code>populate_buy_trend</code> from your strategy - otherwise default-strategy will be used</li>
|
|
<li>copy <code>populate_sell_trend</code> from your strategy - otherwise default-strategy will be used</li>
|
|
</ul>
|
|
<h3 id="1-install-a-custom-hyperopt-file">1. Install a Custom Hyperopt File<a class="headerlink" href="#1-install-a-custom-hyperopt-file" title="Permanent link">¶</a></h3>
|
|
<p>Put your hyperopt file into the directory <code>user_data/hyperopts</code>.</p>
|
|
<p>Let assume you want a hyperopt file <code>awesome_hyperopt.py</code>:<br />
|
|
Copy the file <code>user_data/hyperopts/sample_hyperopt.py</code> into <code>user_data/hyperopts/awesome_hyperopt.py</code></p>
|
|
<h3 id="2-configure-your-guards-and-triggers">2. Configure your Guards and Triggers<a class="headerlink" href="#2-configure-your-guards-and-triggers" title="Permanent link">¶</a></h3>
|
|
<p>There are two places you need to change in your hyperopt file to add a new buy hyperopt for testing:</p>
|
|
<ul>
|
|
<li>Inside <code>indicator_space()</code> - the parameters hyperopt shall be optimizing.</li>
|
|
<li>Inside <code>populate_buy_trend()</code> - applying the parameters.</li>
|
|
</ul>
|
|
<p>There you have two different types of indicators: 1. <code>guards</code> and 2. <code>triggers</code>.</p>
|
|
<ol>
|
|
<li>Guards are conditions like "never buy if ADX < 10", or never buy if current price is over EMA10.</li>
|
|
<li>Triggers are ones that actually trigger buy in specific moment, like "buy when EMA5 crosses over EMA10" or "buy when close price touches lower bollinger band".</li>
|
|
</ol>
|
|
<p>Hyperoptimization will, for each eval round, pick one trigger and possibly
|
|
multiple guards. The constructed strategy will be something like
|
|
"<em>buy exactly when close price touches lower bollinger band, BUT only if
|
|
ADX > 10</em>".</p>
|
|
<p>If you have updated the buy strategy, ie. changed the contents of
|
|
<code>populate_buy_trend()</code> method you have to update the <code>guards</code> and
|
|
<code>triggers</code> hyperopts must use.</p>
|
|
<h4 id="sell-optimization">Sell optimization<a class="headerlink" href="#sell-optimization" title="Permanent link">¶</a></h4>
|
|
<p>Similar to the buy-signal above, sell-signals can also be optimized.
|
|
Place the corresponding settings into the following methods</p>
|
|
<ul>
|
|
<li>Inside <code>sell_indicator_space()</code> - the parameters hyperopt shall be optimizing.</li>
|
|
<li>Inside <code>populate_sell_trend()</code> - applying the parameters.</li>
|
|
</ul>
|
|
<p>The configuration and rules are the same than for buy signals.
|
|
To avoid naming collisions in the search-space, please prefix all sell-spaces with <code>sell-</code>.</p>
|
|
<h4 id="using-ticker-interval-as-part-of-the-strategy">Using ticker-interval as part of the Strategy<a class="headerlink" href="#using-ticker-interval-as-part-of-the-strategy" title="Permanent link">¶</a></h4>
|
|
<p>The Strategy exposes the ticker-interval as <code>self.ticker_interval</code>. The same value is available as class-attribute <code>HyperoptName.ticker_interval</code>.
|
|
In the case of the linked sample-value this would be <code>SampleHyperOpts.ticker_interval</code>.</p>
|
|
<h2 id="solving-a-mystery">Solving a Mystery<a class="headerlink" href="#solving-a-mystery" title="Permanent link">¶</a></h2>
|
|
<p>Let's say you are curious: should you use MACD crossings or lower Bollinger
|
|
Bands to trigger your buys. And you also wonder should you use RSI or ADX to
|
|
help with those buy decisions. If you decide to use RSI or ADX, which values
|
|
should I use for them? So let's use hyperparameter optimization to solve this
|
|
mystery.</p>
|
|
<p>We will start by defining a search space:</p>
|
|
<div class="highlight"><pre><span></span><code> <span class="k">def</span> <span class="nf">indicator_space</span><span class="p">()</span> <span class="o">-></span> <span class="n">List</span><span class="p">[</span><span class="n">Dimension</span><span class="p">]:</span>
|
|
<span class="w"> </span><span class="sd">"""</span>
|
|
<span class="sd"> Define your Hyperopt space for searching strategy parameters</span>
|
|
<span class="sd"> """</span>
|
|
<span class="k">return</span> <span class="p">[</span>
|
|
<span class="n">Integer</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">'adx-value'</span><span class="p">),</span>
|
|
<span class="n">Integer</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">'rsi-value'</span><span class="p">),</span>
|
|
<span class="n">Categorical</span><span class="p">([</span><span class="kc">True</span><span class="p">,</span> <span class="kc">False</span><span class="p">],</span> <span class="n">name</span><span class="o">=</span><span class="s1">'adx-enabled'</span><span class="p">),</span>
|
|
<span class="n">Categorical</span><span class="p">([</span><span class="kc">True</span><span class="p">,</span> <span class="kc">False</span><span class="p">],</span> <span class="n">name</span><span class="o">=</span><span class="s1">'rsi-enabled'</span><span class="p">),</span>
|
|
<span class="n">Categorical</span><span class="p">([</span><span class="s1">'bb_lower'</span><span class="p">,</span> <span class="s1">'macd_cross_signal'</span><span class="p">],</span> <span class="n">name</span><span class="o">=</span><span class="s1">'trigger'</span><span class="p">)</span>
|
|
<span class="p">]</span>
|
|
</code></pre></div>
|
|
<p>Above definition says: I have five parameters I want you to randomly combine
|
|
to find the best combination. Two of them are integer values (<code>adx-value</code>
|
|
and <code>rsi-value</code>) and I want you test in the range of values 20 to 40.
|
|
Then we have three category variables. First two are either <code>True</code> or <code>False</code>.
|
|
We use these to either enable or disable the ADX and RSI guards. The last
|
|
one we call <code>trigger</code> and use it to decide which buy trigger we want to use.</p>
|
|
<p>So let's write the buy strategy using these values:</p>
|
|
<div class="highlight"><pre><span></span><code> <span class="k">def</span> <span class="nf">populate_buy_trend</span><span class="p">(</span><span class="n">dataframe</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span>
|
|
<span class="n">conditions</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="c1"># GUARDS AND TRENDS</span>
|
|
<span class="k">if</span> <span class="s1">'adx-enabled'</span> <span class="ow">in</span> <span class="n">params</span> <span class="ow">and</span> <span class="n">params</span><span class="p">[</span><span class="s1">'adx-enabled'</span><span class="p">]:</span>
|
|
<span class="n">conditions</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dataframe</span><span class="p">[</span><span class="s1">'adx'</span><span class="p">]</span> <span class="o">></span> <span class="n">params</span><span class="p">[</span><span class="s1">'adx-value'</span><span class="p">])</span>
|
|
<span class="k">if</span> <span class="s1">'rsi-enabled'</span> <span class="ow">in</span> <span class="n">params</span> <span class="ow">and</span> <span class="n">params</span><span class="p">[</span><span class="s1">'rsi-enabled'</span><span class="p">]:</span>
|
|
<span class="n">conditions</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dataframe</span><span class="p">[</span><span class="s1">'rsi'</span><span class="p">]</span> <span class="o"><</span> <span class="n">params</span><span class="p">[</span><span class="s1">'rsi-value'</span><span class="p">])</span>
|
|
|
|
<span class="c1"># TRIGGERS</span>
|
|
<span class="k">if</span> <span class="s1">'trigger'</span> <span class="ow">in</span> <span class="n">params</span><span class="p">:</span>
|
|
<span class="k">if</span> <span class="n">params</span><span class="p">[</span><span class="s1">'trigger'</span><span class="p">]</span> <span class="o">==</span> <span class="s1">'bb_lower'</span><span class="p">:</span>
|
|
<span class="n">conditions</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dataframe</span><span class="p">[</span><span class="s1">'close'</span><span class="p">]</span> <span class="o"><</span> <span class="n">dataframe</span><span class="p">[</span><span class="s1">'bb_lowerband'</span><span class="p">])</span>
|
|
<span class="k">if</span> <span class="n">params</span><span class="p">[</span><span class="s1">'trigger'</span><span class="p">]</span> <span class="o">==</span> <span class="s1">'macd_cross_signal'</span><span class="p">:</span>
|
|
<span class="n">conditions</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">qtpylib</span><span class="o">.</span><span class="n">crossed_above</span><span class="p">(</span>
|
|
<span class="n">dataframe</span><span class="p">[</span><span class="s1">'macd'</span><span class="p">],</span> <span class="n">dataframe</span><span class="p">[</span><span class="s1">'macdsignal'</span><span class="p">]</span>
|
|
<span class="p">))</span>
|
|
|
|
<span class="k">if</span> <span class="n">conditions</span><span class="p">:</span>
|
|
<span class="n">dataframe</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span>
|
|
<span class="n">reduce</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">x</span> <span class="o">&</span> <span class="n">y</span><span class="p">,</span> <span class="n">conditions</span><span class="p">),</span>
|
|
<span class="s1">'buy'</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
|
|
|
|
<span class="k">return</span> <span class="n">dataframe</span>
|
|
|
|
<span class="k">return</span> <span class="n">populate_buy_trend</span>
|
|
</code></pre></div>
|
|
<p>Hyperopting will now call this <code>populate_buy_trend</code> as many times you ask it (<code>epochs</code>)
|
|
with different value combinations. It will then use the given historical data and make
|
|
buys based on the buy signals generated with the above function and based on the results
|
|
it will end with telling you which paramter combination produced the best profits.</p>
|
|
<p>The search for best parameters starts with a few random combinations and then uses a
|
|
regressor algorithm (currently ExtraTreesRegressor) to quickly find a parameter combination
|
|
that minimizes the value of the <a href="#loss-functions">loss function</a>.</p>
|
|
<p>The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
|
|
When you want to test an indicator that isn't used by the bot currently, remember to
|
|
add it to the <code>populate_indicators()</code> method in <code>hyperopt.py</code>.</p>
|
|
<h2 id="loss-functions">Loss-functions<a class="headerlink" href="#loss-functions" title="Permanent link">¶</a></h2>
|
|
<p>Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.</p>
|
|
<p>By default, FreqTrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.</p>
|
|
<p>A different loss function can be specified by using the <code>--hyperopt-loss <Class-name></code> argument.
|
|
This class should be in its own file within the <code>user_data/hyperopts/</code> directory.</p>
|
|
<p>Currently, the following loss functions are builtin: <code>DefaultHyperOptLoss</code> (default legacy Freqtrade hyperoptimization loss function), <code>SharpeHyperOptLoss</code> (optimizes Sharpe Ratio calculated on the trade returns) and <code>OnlyProfitHyperOptLoss</code> (which takes only amount of profit into consideration).</p>
|
|
<h3 id="creating-and-using-a-custom-loss-function">Creating and using a custom loss function<a class="headerlink" href="#creating-and-using-a-custom-loss-function" title="Permanent link">¶</a></h3>
|
|
<p>To use a custom loss function class, make sure that the function <code>hyperopt_loss_function</code> is defined in your custom hyperopt loss class.
|
|
For the sample below, you then need to add the command line parameter <code>--hyperopt-loss SuperDuperHyperOptLoss</code> to your hyperopt call so this fuction is being used.</p>
|
|
<p>A sample of this can be found below, which is identical to the Default Hyperopt loss implementation. A full sample can be found <a href="https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_loss.py">user_data/hyperopts/</a></p>
|
|
<div class="highlight"><pre><span></span><code><span class="kn">from</span> <span class="nn">freqtrade.optimize.hyperopt</span> <span class="kn">import</span> <span class="n">IHyperOptLoss</span>
|
|
|
|
<span class="n">TARGET_TRADES</span> <span class="o">=</span> <span class="mi">600</span>
|
|
<span class="n">EXPECTED_MAX_PROFIT</span> <span class="o">=</span> <span class="mf">3.0</span>
|
|
<span class="n">MAX_ACCEPTED_TRADE_DURATION</span> <span class="o">=</span> <span class="mi">300</span>
|
|
|
|
<span class="k">class</span> <span class="nc">SuperDuperHyperOptLoss</span><span class="p">(</span><span class="n">IHyperOptLoss</span><span class="p">):</span>
|
|
<span class="w"> </span><span class="sd">"""</span>
|
|
<span class="sd"> Defines the default loss function for hyperopt</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="nd">@staticmethod</span>
|
|
<span class="k">def</span> <span class="nf">hyperopt_loss_function</span><span class="p">(</span><span class="n">results</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span> <span class="n">trade_count</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
|
|
<span class="n">min_date</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">max_date</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span>
|
|
<span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span>
|
|
<span class="w"> </span><span class="sd">"""</span>
|
|
<span class="sd"> Objective function, returns smaller number for better results</span>
|
|
<span class="sd"> This is the legacy algorithm (used until now in freqtrade).</span>
|
|
<span class="sd"> Weights are distributed as follows:</span>
|
|
<span class="sd"> * 0.4 to trade duration</span>
|
|
<span class="sd"> * 0.25: Avoiding trade loss</span>
|
|
<span class="sd"> * 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above</span>
|
|
<span class="sd"> """</span>
|
|
<span class="n">total_profit</span> <span class="o">=</span> <span class="n">results</span><span class="o">.</span><span class="n">profit_percent</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
|
|
<span class="n">trade_duration</span> <span class="o">=</span> <span class="n">results</span><span class="o">.</span><span class="n">trade_duration</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
|
|
|
|
<span class="n">trade_loss</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mf">0.25</span> <span class="o">*</span> <span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">trade_count</span> <span class="o">-</span> <span class="n">TARGET_TRADES</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="mi">10</span> <span class="o">**</span> <span class="mf">5.8</span><span class="p">)</span>
|
|
<span class="n">profit_loss</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">total_profit</span> <span class="o">/</span> <span class="n">EXPECTED_MAX_PROFIT</span><span class="p">)</span>
|
|
<span class="n">duration_loss</span> <span class="o">=</span> <span class="mf">0.4</span> <span class="o">*</span> <span class="nb">min</span><span class="p">(</span><span class="n">trade_duration</span> <span class="o">/</span> <span class="n">MAX_ACCEPTED_TRADE_DURATION</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
|
<span class="n">result</span> <span class="o">=</span> <span class="n">trade_loss</span> <span class="o">+</span> <span class="n">profit_loss</span> <span class="o">+</span> <span class="n">duration_loss</span>
|
|
<span class="k">return</span> <span class="n">result</span>
|
|
</code></pre></div>
|
|
<p>Currently, the arguments are:</p>
|
|
<ul>
|
|
<li><code>results</code>: DataFrame containing the result<br />
|
|
The following columns are available in results (corresponds to the output-file of backtesting when used with <code>--export trades</code>):<br />
|
|
<code>pair, profit_percent, profit_abs, open_time, close_time, open_index, close_index, trade_duration, open_at_end, open_rate, close_rate, sell_reason</code></li>
|
|
<li><code>trade_count</code>: Amount of trades (identical to <code>len(results)</code>)</li>
|
|
<li><code>min_date</code>: Start date of the hyperopting TimeFrame</li>
|
|
<li><code>min_date</code>: End date of the hyperopting TimeFrame</li>
|
|
</ul>
|
|
<p>This function needs to return a floating point number (<code>float</code>). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.</p>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>This function is called once per iteration - so please make sure to have this as optimized as possible to not slow hyperopt down unnecessarily.</p>
|
|
</div>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>Please keep the arguments <code>*args</code> and <code>**kwargs</code> in the interface to allow us to extend this interface later.</p>
|
|
</div>
|
|
<h2 id="execute-hyperopt">Execute Hyperopt<a class="headerlink" href="#execute-hyperopt" title="Permanent link">¶</a></h2>
|
|
<p>Once you have updated your hyperopt configuration you can run it.
|
|
Because hyperopt tries a lot of combinations to find the best parameters it will take time to get a good result. More time usually results in better results.</p>
|
|
<p>We strongly recommend to use <code>screen</code> or <code>tmux</code> to prevent any connection loss.</p>
|
|
<div class="highlight"><pre><span></span><code>freqtrade<span class="w"> </span>-c<span class="w"> </span>config.json<span class="w"> </span>hyperopt<span class="w"> </span>--customhyperopt<span class="w"> </span><hyperoptname><span class="w"> </span>-e<span class="w"> </span><span class="m">5000</span><span class="w"> </span>--spaces<span class="w"> </span>all
|
|
</code></pre></div>
|
|
<p>Use <code><hyperoptname></code> as the name of the custom hyperopt used.</p>
|
|
<p>The <code>-e</code> flag will set how many evaluations hyperopt will do. We recommend
|
|
running at least several thousand evaluations.</p>
|
|
<p>The <code>--spaces all</code> flag determines that all possible parameters should be optimized. Possibilities are listed below.</p>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>By default, hyperopt will erase previous results and start from scratch. Continuation can be archived by using <code>--continue</code>.</p>
|
|
</div>
|
|
<div class="admonition warning">
|
|
<p class="admonition-title">Warning</p>
|
|
<p>When switching parameters or changing configuration options, make sure to not use the argument <code>--continue</code> so temporary results can be removed.</p>
|
|
</div>
|
|
<h3 id="execute-hyperopt-with-different-ticker-data-source">Execute Hyperopt with Different Ticker-Data Source<a class="headerlink" href="#execute-hyperopt-with-different-ticker-data-source" title="Permanent link">¶</a></h3>
|
|
<p>If you would like to hyperopt parameters using an alternate ticker data that
|
|
you have on-disk, use the <code>--datadir PATH</code> option. Default hyperopt will
|
|
use data from directory <code>user_data/data</code>.</p>
|
|
<h3 id="running-hyperopt-with-smaller-testset">Running Hyperopt with Smaller Testset<a class="headerlink" href="#running-hyperopt-with-smaller-testset" title="Permanent link">¶</a></h3>
|
|
<p>Use the <code>--timerange</code> argument to change how much of the testset you want to use.
|
|
For example, to use one month of data, pass the following parameter to the hyperopt call:</p>
|
|
<div class="highlight"><pre><span></span><code>freqtrade<span class="w"> </span>hyperopt<span class="w"> </span>--timerange<span class="w"> </span><span class="m">20180401</span>-20180501
|
|
</code></pre></div>
|
|
<h3 id="running-hyperopt-with-smaller-search-space">Running Hyperopt with Smaller Search Space<a class="headerlink" href="#running-hyperopt-with-smaller-search-space" title="Permanent link">¶</a></h3>
|
|
<p>Use the <code>--spaces</code> argument to limit the search space used by hyperopt.
|
|
Letting Hyperopt optimize everything is a huuuuge search space. Often it
|
|
might make more sense to start by just searching for initial buy algorithm.
|
|
Or maybe you just want to optimize your stoploss or roi table for that awesome
|
|
new buy strategy you have.</p>
|
|
<p>Legal values are:</p>
|
|
<ul>
|
|
<li><code>all</code>: optimize everything</li>
|
|
<li><code>buy</code>: just search for a new buy strategy</li>
|
|
<li><code>sell</code>: just search for a new sell strategy</li>
|
|
<li><code>roi</code>: just optimize the minimal profit table for your strategy</li>
|
|
<li><code>stoploss</code>: search for the best stoploss value</li>
|
|
<li>space-separated list of any of the above values for example <code>--spaces roi stoploss</code></li>
|
|
</ul>
|
|
<h3 id="position-stacking-and-disabling-max-market-positions">Position stacking and disabling max market positions<a class="headerlink" href="#position-stacking-and-disabling-max-market-positions" title="Permanent link">¶</a></h3>
|
|
<p>In some situations, you may need to run Hyperopt (and Backtesting) with the
|
|
<code>--eps</code>/<code>--enable-position-staking</code> and <code>--dmmp</code>/<code>--disable-max-market-positions</code> arguments.</p>
|
|
<p>By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one
|
|
open trade is allowed for every traded pair. The total number of trades open for all pairs
|
|
is also limited by the <code>max_open_trades</code> setting. During Hyperopt/Backtesting this may lead to
|
|
some potential trades to be hidden (or masked) by previosly open trades.</p>
|
|
<p>The <code>--eps</code>/<code>--enable-position-stacking</code> argument allows emulation of buying the same pair multiple times,
|
|
while <code>--dmmp</code>/<code>--disable-max-market-positions</code> disables applying <code>max_open_trades</code>
|
|
during Hyperopt/Backtesting (which is equal to setting <code>max_open_trades</code> to a very high
|
|
number).</p>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>Dry/live runs will <strong>NOT</strong> use position stacking - therefore it does make sense to also validate the strategy without this as it's closer to reality.</p>
|
|
</div>
|
|
<p>You can also enable position stacking in the configuration file by explicitly setting
|
|
<code>"position_stacking"=true</code>.</p>
|
|
<h2 id="understand-the-hyperopt-result">Understand the Hyperopt Result<a class="headerlink" href="#understand-the-hyperopt-result" title="Permanent link">¶</a></h2>
|
|
<p>Once Hyperopt is completed you can use the result to create a new strategy.
|
|
Given the following result from hyperopt:</p>
|
|
<div class="highlight"><pre><span></span><code>Best result:
|
|
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
|
|
with values:
|
|
{ 'adx-value': 44,
|
|
'rsi-value': 29,
|
|
'adx-enabled': False,
|
|
'rsi-enabled': True,
|
|
'trigger': 'bb_lower'}
|
|
</code></pre></div>
|
|
<p>You should understand this result like:</p>
|
|
<ul>
|
|
<li>The buy trigger that worked best was <code>bb_lower</code>.</li>
|
|
<li>You should not use ADX because <code>adx-enabled: False</code>)</li>
|
|
<li>You should <strong>consider</strong> using the RSI indicator (<code>rsi-enabled: True</code> and the best value is <code>29.0</code> (<code>rsi-value: 29.0</code>)</li>
|
|
</ul>
|
|
<p>You have to look inside your strategy file into <code>buy_strategy_generator()</code>
|
|
method, what those values match to.</p>
|
|
<p>So for example you had <code>rsi-value: 29.0</code> so we would look at <code>rsi</code>-block, that translates to the following code block:</p>
|
|
<div class="highlight"><pre><span></span><code><span class="p">(</span><span class="n">dataframe</span><span class="p">[</span><span class="s1">'rsi'</span><span class="p">]</span> <span class="o"><</span> <span class="mf">29.0</span><span class="p">)</span>
|
|
</code></pre></div>
|
|
<p>Translating your whole hyperopt result as the new buy-signal
|
|
would then look like:</p>
|
|
<div class="highlight"><pre><span></span><code><span class="k">def</span> <span class="nf">populate_buy_trend</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataframe</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span>
|
|
<span class="n">dataframe</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span>
|
|
<span class="p">(</span>
|
|
<span class="p">(</span><span class="n">dataframe</span><span class="p">[</span><span class="s1">'rsi'</span><span class="p">]</span> <span class="o"><</span> <span class="mf">29.0</span><span class="p">)</span> <span class="o">&</span> <span class="c1"># rsi-value</span>
|
|
<span class="n">dataframe</span><span class="p">[</span><span class="s1">'close'</span><span class="p">]</span> <span class="o"><</span> <span class="n">dataframe</span><span class="p">[</span><span class="s1">'bb_lowerband'</span><span class="p">]</span> <span class="c1"># trigger</span>
|
|
<span class="p">),</span>
|
|
<span class="s1">'buy'</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
|
|
<span class="k">return</span> <span class="n">dataframe</span>
|
|
</code></pre></div>
|
|
<h3 id="understand-hyperopt-roi-results">Understand Hyperopt ROI results<a class="headerlink" href="#understand-hyperopt-roi-results" title="Permanent link">¶</a></h3>
|
|
<p>If you are optimizing ROI, you're result will look as follows and include a ROI table.</p>
|
|
<div class="highlight"><pre><span></span><code>Best result:
|
|
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
|
|
with values:
|
|
{ 'adx-value': 44,
|
|
'rsi-value': 29,
|
|
'adx-enabled': false,
|
|
'rsi-enabled': True,
|
|
'trigger': 'bb_lower',
|
|
'roi_t1': 40,
|
|
'roi_t2': 57,
|
|
'roi_t3': 21,
|
|
'roi_p1': 0.03634636907306948,
|
|
'roi_p2': 0.055237357937802885,
|
|
'roi_p3': 0.015163796015548354,
|
|
'stoploss': -0.37996664668703606
|
|
}
|
|
ROI table:
|
|
{ 0: 0.10674752302642071,
|
|
21: 0.09158372701087236,
|
|
78: 0.03634636907306948,
|
|
118: 0}
|
|
</code></pre></div>
|
|
<p>This would translate to the following ROI table:</p>
|
|
<div class="highlight"><pre><span></span><code> <span class="n">minimal_roi</span> <span class="o">=</span> <span class="p">{</span>
|
|
<span class="s2">"118"</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span>
|
|
<span class="s2">"78"</span><span class="p">:</span> <span class="mf">0.0363463</span><span class="p">,</span>
|
|
<span class="s2">"21"</span><span class="p">:</span> <span class="mf">0.0915</span><span class="p">,</span>
|
|
<span class="s2">"0"</span><span class="p">:</span> <span class="mf">0.106</span>
|
|
<span class="p">}</span>
|
|
</code></pre></div>
|
|
<h3 id="validate-backtesting-results">Validate backtesting results<a class="headerlink" href="#validate-backtesting-results" title="Permanent link">¶</a></h3>
|
|
<p>Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.</p>
|
|
<p>To achieve same results (number of trades, their durations, profit, etc.) than during Hyperopt, please use same set of arguments <code>--dmmp</code>/<code>--disable-max-market-positions</code> and <code>--eps</code>/<code>--enable-position-stacking</code> for Backtesting.</p>
|
|
<h2 id="next-step">Next Step<a class="headerlink" href="#next-step" title="Permanent link">¶</a></h2>
|
|
<p>Now you have a perfect bot and want to control it from Telegram. Your
|
|
next step is to learn the <a href="../telegram-usage/">Telegram usage</a>.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</article>
|
|
</div>
|
|
|
|
|
|
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
|
|
</div>
|
|
|
|
</main>
|
|
|
|
<footer class="md-footer">
|
|
|
|
<div class="md-footer-meta md-typeset">
|
|
<div class="md-footer-meta__inner md-grid">
|
|
<div class="md-copyright">
|
|
|
|
|
|
Made with
|
|
<a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener">
|
|
Material for MkDocs
|
|
</a>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
</footer>
|
|
|
|
</div>
|
|
<div class="md-dialog" data-md-component="dialog">
|
|
<div class="md-dialog__inner md-typeset"></div>
|
|
</div>
|
|
|
|
|
|
<script id="__config" type="application/json">{"base": "..", "features": [], "search": "../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}, "version": {"provider": "mike"}}</script>
|
|
|
|
|
|
<script src="../assets/javascripts/bundle.fe8b6f2b.min.js"></script>
|
|
|
|
|
|
</body>
|
|
</html> |