freqtrade_origin/freqtrade/optimize/optimize_reports/bt_output.py
2024-07-09 19:39:47 +02:00

499 lines
19 KiB
Python

import logging
from typing import Any, Dict, List, Literal, Union
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT, Config
from freqtrade.optimize.optimize_reports.optimize_reports import generate_periodic_breakdown_stats
from freqtrade.types import BacktestResultType
from freqtrade.util import decimals_per_coin, fmt_coin, print_rich_table
logger = logging.getLogger(__name__)
def _get_line_floatfmt(stake_currency: str) -> List[str]:
"""
Generate floatformat (goes in line with _generate_result_line())
"""
return ["s", "d", ".2f", f".{decimals_per_coin(stake_currency)}f", ".2f", "d", "s", "s"]
def _get_line_header(
first_column: Union[str, List[str]], stake_currency: str, direction: str = "Trades"
) -> List[str]:
"""
Generate header lines (goes in line with _generate_result_line())
"""
return [
*([first_column] if isinstance(first_column, str) else first_column),
direction,
"Avg Profit %",
f"Tot Profit {stake_currency}",
"Tot Profit %",
"Avg Duration",
"Win Draw Loss Win%",
]
def generate_wins_draws_losses(wins, draws, losses):
if wins > 0 and losses == 0:
wl_ratio = "100"
elif wins == 0:
wl_ratio = "0"
else:
wl_ratio = f"{100.0 / (wins + draws + losses) * wins:.1f}" if losses > 0 else "100"
return f"{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}"
def text_table_bt_results(
pair_results: List[Dict[str, Any]], stake_currency: str, title: str
) -> None:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
:param title: Title of the table
"""
headers = _get_line_header("Pair", stake_currency, "Trades")
output = [
[
t["key"],
t["trades"],
t["profit_mean_pct"],
f"{t['profit_total_abs']:.{decimals_per_coin(stake_currency)}f}",
t["profit_total_pct"],
t["duration_avg"],
generate_wins_draws_losses(t["wins"], t["draws"], t["losses"]),
]
for t in pair_results
]
# Ignore type as floatfmt does allow tuples but mypy does not know that
print_rich_table(output, headers, summary=title)
def text_table_tags(
tag_type: Literal["enter_tag", "exit_tag", "mix_tag"],
tag_results: List[Dict[str, Any]],
stake_currency: str,
) -> None:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
"""
floatfmt = _get_line_floatfmt(stake_currency)
fallback: str = ""
is_list = False
if tag_type == "enter_tag":
title = "Enter Tag"
headers = _get_line_header(title, stake_currency, "Entries")
elif tag_type == "exit_tag":
title = "Exit Reason"
headers = _get_line_header(title, stake_currency, "Exits")
fallback = "exit_reason"
else:
# Mix tag
title = "Mixed Tag"
headers = _get_line_header(["Enter Tag", "Exit Reason"], stake_currency, "Trades")
floatfmt.insert(0, "s")
is_list = True
output = [
[
*(
(
(t["key"] if isinstance(t["key"], list) else [t["key"], ""])
if is_list
else [t["key"]]
)
if t.get("key") is not None and len(str(t["key"])) > 0
else [t.get(fallback, "OTHER")]
),
t["trades"],
t["profit_mean_pct"],
f"{t['profit_total_abs']:.{decimals_per_coin(stake_currency)}f}",
t["profit_total_pct"],
t.get("duration_avg"),
generate_wins_draws_losses(t["wins"], t["draws"], t["losses"]),
]
for t in tag_results
]
# Ignore type as floatfmt does allow tuples but mypy does not know that
print_rich_table(output, headers, summary=f"{title.upper()} STATS")
def text_table_periodic_breakdown(
days_breakdown_stats: List[Dict[str, Any]], stake_currency: str, period: str
) -> None:
"""
Generate small table with Backtest results by days
:param days_breakdown_stats: Days breakdown metrics
:param stake_currency: Stakecurrency used
"""
headers = [
period.capitalize(),
f"Tot Profit {stake_currency}",
"Wins",
"Draws",
"Losses",
]
output = [
[
d["date"],
fmt_coin(d["profit_abs"], stake_currency, False),
d["wins"],
d["draws"],
d["loses"],
]
for d in days_breakdown_stats
]
print_rich_table(output, headers, summary=f"{period.upper()} BREAKDOWN")
def text_table_strategy(strategy_results, stake_currency: str, title: str):
"""
Generate summary table per strategy
:param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:param stake_currency: stake-currency - used to correctly name headers
"""
headers = _get_line_header("Strategy", stake_currency, "Trades")
# _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless
# therefore we slip this column in only for strategy summary here.
headers.append("Drawdown")
# Align drawdown string on the center two space separator.
if "max_drawdown_account" in strategy_results[0]:
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
else:
# Support for prior backtest results
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
dd_pad_abs = max([len(t["max_drawdown_abs"]) for t in strategy_results])
dd_pad_per = max([len(dd) for dd in drawdown])
drawdown = [
f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
for t, dd in zip(strategy_results, drawdown)
]
output = [
[
t["key"],
t["trades"],
f"{t['profit_mean_pct']:.2f}",
f"{t['profit_total_abs']:.{decimals_per_coin(stake_currency)}f}",
t["profit_total_pct"],
t["duration_avg"],
generate_wins_draws_losses(t["wins"], t["draws"], t["losses"]),
drawdown,
]
for t, drawdown in zip(strategy_results, drawdown)
]
print_rich_table(output, headers, summary=title)
def text_table_add_metrics(strat_results: Dict) -> None:
if len(strat_results["trades"]) > 0:
best_trade = max(strat_results["trades"], key=lambda x: x["profit_ratio"])
worst_trade = min(strat_results["trades"], key=lambda x: x["profit_ratio"])
short_metrics = (
[
("", ""), # Empty line to improve readability
(
"Long / Short",
f"{strat_results.get('trade_count_long', 'total_trades')} / "
f"{strat_results.get('trade_count_short', 0)}",
),
("Total profit Long %", f"{strat_results['profit_total_long']:.2%}"),
("Total profit Short %", f"{strat_results['profit_total_short']:.2%}"),
(
"Absolute profit Long",
fmt_coin(
strat_results["profit_total_long_abs"], strat_results["stake_currency"]
),
),
(
"Absolute profit Short",
fmt_coin(
strat_results["profit_total_short_abs"], strat_results["stake_currency"]
),
),
]
if strat_results.get("trade_count_short", 0) > 0
else []
)
drawdown_metrics = []
if "max_relative_drawdown" in strat_results:
# Compatibility to show old hyperopt results
drawdown_metrics.append(
("Max % of account underwater", f"{strat_results['max_relative_drawdown']:.2%}")
)
drawdown_metrics.extend(
[
(
("Absolute Drawdown (Account)", f"{strat_results['max_drawdown_account']:.2%}")
if "max_drawdown_account" in strat_results
else ("Drawdown", f"{strat_results['max_drawdown']:.2%}")
),
(
"Absolute Drawdown",
fmt_coin(strat_results["max_drawdown_abs"], strat_results["stake_currency"]),
),
(
"Drawdown high",
fmt_coin(strat_results["max_drawdown_high"], strat_results["stake_currency"]),
),
(
"Drawdown low",
fmt_coin(strat_results["max_drawdown_low"], strat_results["stake_currency"]),
),
("Drawdown Start", strat_results["drawdown_start"]),
("Drawdown End", strat_results["drawdown_end"]),
]
)
entry_adjustment_metrics = (
[
("Canceled Trade Entries", strat_results.get("canceled_trade_entries", "N/A")),
("Canceled Entry Orders", strat_results.get("canceled_entry_orders", "N/A")),
("Replaced Entry Orders", strat_results.get("replaced_entry_orders", "N/A")),
]
if strat_results.get("canceled_entry_orders", 0) > 0
else []
)
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
# command stores these results and newer version of freqtrade must be able to handle old
# results with missing new fields.
metrics = [
("Backtesting from", strat_results["backtest_start"]),
("Backtesting to", strat_results["backtest_end"]),
("Max open trades", strat_results["max_open_trades"]),
("", ""), # Empty line to improve readability
(
"Total/Daily Avg Trades",
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}",
),
(
"Starting balance",
fmt_coin(strat_results["starting_balance"], strat_results["stake_currency"]),
),
(
"Final balance",
fmt_coin(strat_results["final_balance"], strat_results["stake_currency"]),
),
(
"Absolute profit ",
fmt_coin(strat_results["profit_total_abs"], strat_results["stake_currency"]),
),
("Total profit %", f"{strat_results['profit_total']:.2%}"),
("CAGR %", f"{strat_results['cagr']:.2%}" if "cagr" in strat_results else "N/A"),
("Sortino", f"{strat_results['sortino']:.2f}" if "sortino" in strat_results else "N/A"),
("Sharpe", f"{strat_results['sharpe']:.2f}" if "sharpe" in strat_results else "N/A"),
("Calmar", f"{strat_results['calmar']:.2f}" if "calmar" in strat_results else "N/A"),
(
"Profit factor",
(
f'{strat_results["profit_factor"]:.2f}'
if "profit_factor" in strat_results
else "N/A"
),
),
(
"Expectancy (Ratio)",
(
f"{strat_results['expectancy']:.2f} ({strat_results['expectancy_ratio']:.2f})"
if "expectancy_ratio" in strat_results
else "N/A"
),
),
(
"Avg. daily profit %",
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}",
),
(
"Avg. stake amount",
fmt_coin(strat_results["avg_stake_amount"], strat_results["stake_currency"]),
),
(
"Total trade volume",
fmt_coin(strat_results["total_volume"], strat_results["stake_currency"]),
),
*short_metrics,
("", ""), # Empty line to improve readability
(
"Best Pair",
f"{strat_results['best_pair']['key']} "
f"{strat_results['best_pair']['profit_total']:.2%}",
),
(
"Worst Pair",
f"{strat_results['worst_pair']['key']} "
f"{strat_results['worst_pair']['profit_total']:.2%}",
),
("Best trade", f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"),
("Worst trade", f"{worst_trade['pair']} {worst_trade['profit_ratio']:.2%}"),
(
"Best day",
fmt_coin(strat_results["backtest_best_day_abs"], strat_results["stake_currency"]),
),
(
"Worst day",
fmt_coin(strat_results["backtest_worst_day_abs"], strat_results["stake_currency"]),
),
(
"Days win/draw/lose",
f"{strat_results['winning_days']} / "
f"{strat_results['draw_days']} / {strat_results['losing_days']}",
),
("Avg. Duration Winners", f"{strat_results['winner_holding_avg']}"),
("Avg. Duration Loser", f"{strat_results['loser_holding_avg']}"),
(
"Max Consecutive Wins / Loss",
(
(
f"{strat_results['max_consecutive_wins']} / "
f"{strat_results['max_consecutive_losses']}"
)
if "max_consecutive_losses" in strat_results
else "N/A"
),
),
("Rejected Entry signals", strat_results.get("rejected_signals", "N/A")),
(
"Entry/Exit Timeouts",
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "
f"{strat_results.get('timedout_exit_orders', 'N/A')}",
),
*entry_adjustment_metrics,
("", ""), # Empty line to improve readability
("Min balance", fmt_coin(strat_results["csum_min"], strat_results["stake_currency"])),
("Max balance", fmt_coin(strat_results["csum_max"], strat_results["stake_currency"])),
*drawdown_metrics,
("Market change", f"{strat_results['market_change']:.2%}"),
]
print_rich_table(metrics, ["Metric", "Value"], summary="SUMMARY METRICS", justify="left")
else:
start_balance = fmt_coin(strat_results["starting_balance"], strat_results["stake_currency"])
stake_amount = (
fmt_coin(strat_results["stake_amount"], strat_results["stake_currency"])
if strat_results["stake_amount"] != UNLIMITED_STAKE_AMOUNT
else "unlimited"
)
message = (
"No trades made. "
f"Your starting balance was {start_balance}, "
f"and your stake was {stake_amount}."
)
print(message)
def _show_tag_subresults(results: Dict[str, Any], stake_currency: str):
"""
Print tag subresults (enter_tag, exit_reason_summary, mix_tag_stats)
"""
if (enter_tags := results.get("results_per_enter_tag")) is not None:
text_table_tags("enter_tag", enter_tags, stake_currency)
if (exit_reasons := results.get("exit_reason_summary")) is not None:
text_table_tags("exit_tag", exit_reasons, stake_currency)
if (mix_tag := results.get("mix_tag_stats")) is not None:
text_table_tags("mix_tag", mix_tag, stake_currency)
def show_backtest_result(
strategy: str, results: Dict[str, Any], stake_currency: str, backtest_breakdown: List[str]
):
"""
Print results for one strategy
"""
# Print results
print(f"Result for strategy {strategy}")
text_table_bt_results(
results["results_per_pair"], stake_currency=stake_currency, title="BACKTESTING REPORT"
)
text_table_bt_results(
results["left_open_trades"], stake_currency=stake_currency, title="LEFT OPEN TRADES REPORT"
)
_show_tag_subresults(results, stake_currency)
for period in backtest_breakdown:
if period in results.get("periodic_breakdown", {}):
days_breakdown_stats = results["periodic_breakdown"][period]
else:
days_breakdown_stats = generate_periodic_breakdown_stats(
trade_list=results["trades"], period=period
)
text_table_periodic_breakdown(
days_breakdown_stats=days_breakdown_stats, stake_currency=stake_currency, period=period
)
text_table_add_metrics(results)
print()
def show_backtest_results(config: Config, backtest_stats: BacktestResultType):
stake_currency = config["stake_currency"]
for strategy, results in backtest_stats["strategy"].items():
show_backtest_result(
strategy, results, stake_currency, config.get("backtest_breakdown", [])
)
if len(backtest_stats["strategy"]) > 0:
# Print Strategy summary table
print(
f"Backtested {results['backtest_start']} -> {results['backtest_end']} |"
f" Max open trades : {results['max_open_trades']}"
)
text_table_strategy(
backtest_stats["strategy_comparison"], stake_currency, "STRATEGY SUMMARY"
)
def show_sorted_pairlist(config: Config, backtest_stats: BacktestResultType):
if config.get("backtest_show_pair_list", False):
for strategy, results in backtest_stats["strategy"].items():
print(f"Pairs for Strategy {strategy}: \n[")
for result in results["results_per_pair"]:
if result["key"] != "TOTAL":
print(f'"{result["key"]}", // {result["profit_mean"]:.2%}')
print("]")
def generate_edge_table(results: dict) -> None:
tabular_data = []
headers = [
"Pair",
"Stoploss",
"Win Rate",
"Risk Reward Ratio",
"Required Risk Reward",
"Expectancy",
"Total Number of Trades",
"Average Duration (min)",
]
for result in results.items():
if result[1].nb_trades > 0:
tabular_data.append(
[
result[0],
f"{result[1].stoploss:.10g}",
f"{result[1].winrate:.2f}",
f"{result[1].risk_reward_ratio:.2f}",
f"{result[1].required_risk_reward:.2f}",
f"{result[1].expectancy:.2f}",
result[1].nb_trades,
round(result[1].avg_trade_duration),
]
)
print_rich_table(tabular_data, headers, summary="EDGE TABLE")