mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-15 20:53:58 +00:00
240 lines
9.1 KiB
Python
240 lines
9.1 KiB
Python
import shutil
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
import pandas as pd
|
|
import pytest
|
|
|
|
from freqtrade.configuration import TimeRange
|
|
from freqtrade.data.dataprovider import DataProvider
|
|
from freqtrade.exceptions import OperationalException
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from tests.conftest import get_patched_exchange
|
|
from tests.freqai.conftest import get_patched_freqai_strategy
|
|
|
|
|
|
def test_update_historic_data(mocker, freqai_conf):
|
|
freqai_conf["runmode"] = "backtest"
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
freqai = strategy.freqai
|
|
freqai.live = True
|
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
|
freqai.dk.live = True
|
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
|
|
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
|
historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
|
|
dp_candles = len(strategy.dp.get_pair_dataframe("ADA/BTC", "5m"))
|
|
candle_difference = dp_candles - historic_candles
|
|
freqai.dk.pair = "ADA/BTC"
|
|
freqai.dd.update_historic_data(strategy, freqai.dk)
|
|
|
|
updated_historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
|
|
|
|
assert updated_historic_candles - historic_candles == candle_difference
|
|
shutil.rmtree(Path(freqai.dk.full_path))
|
|
|
|
|
|
def test_load_all_pairs_histories(mocker, freqai_conf):
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
freqai = strategy.freqai
|
|
freqai.live = True
|
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
|
freqai.dk.live = True
|
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
|
|
|
assert len(freqai.dd.historic_data.keys()) == len(
|
|
freqai_conf.get("exchange", {}).get("pair_whitelist")
|
|
)
|
|
assert len(freqai.dd.historic_data["ADA/BTC"]) == len(
|
|
freqai_conf.get("freqai", {}).get("feature_parameters", {}).get("include_timeframes")
|
|
)
|
|
shutil.rmtree(Path(freqai.dk.full_path))
|
|
|
|
|
|
def test_get_base_and_corr_dataframes(mocker, freqai_conf):
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
freqai = strategy.freqai
|
|
freqai.live = True
|
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
|
freqai.dk.live = True
|
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
|
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
|
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
|
|
|
num_tfs = len(
|
|
freqai_conf.get("freqai", {}).get("feature_parameters", {}).get("include_timeframes")
|
|
)
|
|
|
|
assert len(base_df.keys()) == num_tfs
|
|
|
|
assert len(corr_df.keys()) == len(
|
|
freqai_conf.get("freqai", {}).get("feature_parameters", {}).get("include_corr_pairlist")
|
|
)
|
|
|
|
assert len(corr_df["ADA/BTC"].keys()) == num_tfs
|
|
shutil.rmtree(Path(freqai.dk.full_path))
|
|
|
|
|
|
def test_use_strategy_to_populate_indicators(mocker, freqai_conf):
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
strategy.freqai_info = freqai_conf.get("freqai", {})
|
|
freqai = strategy.freqai
|
|
freqai.live = True
|
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
|
freqai.dk.live = True
|
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
|
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
|
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
|
|
|
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
|
|
|
assert len(df.columns) == 33
|
|
shutil.rmtree(Path(freqai.dk.full_path))
|
|
|
|
|
|
def test_get_timerange_from_live_historic_predictions(mocker, freqai_conf):
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
freqai = strategy.freqai
|
|
freqai.live = False
|
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
|
freqai.dk.live = False
|
|
timerange = TimeRange.parse_timerange("20180126-20180130")
|
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
|
sub_timerange = TimeRange.parse_timerange("20180128-20180130")
|
|
_, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "ADA/BTC", freqai.dk)
|
|
base_df["5m"]["date_pred"] = base_df["5m"]["date"]
|
|
freqai.dd.historic_predictions = {}
|
|
freqai.dd.historic_predictions["ADA/USDT"] = base_df["5m"]
|
|
freqai.dd.save_historic_predictions_to_disk()
|
|
freqai.dd.save_global_metadata_to_disk({"start_dry_live_date": 1516406400})
|
|
|
|
timerange = freqai.dd.get_timerange_from_live_historic_predictions()
|
|
assert timerange.startts == 1516406400
|
|
assert timerange.stopts == 1517356500
|
|
|
|
|
|
def test_get_timerange_from_backtesting_live_df_pred_not_found(mocker, freqai_conf):
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
freqai = strategy.freqai
|
|
with pytest.raises(OperationalException, match=r"Historic predictions not found.*"):
|
|
freqai.dd.get_timerange_from_live_historic_predictions()
|
|
|
|
|
|
def test_set_initial_return_values(mocker, freqai_conf):
|
|
"""
|
|
Simple test of the set initial return values that ensures
|
|
we are concatenating and ffilling values properly.
|
|
"""
|
|
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
freqai = strategy.freqai
|
|
freqai.live = False
|
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
|
# Setup
|
|
pair = "BTC/USD"
|
|
end_x = "2023-08-31"
|
|
start_x_plus_1 = "2023-08-30"
|
|
end_x_plus_5 = "2023-09-03"
|
|
|
|
historic_data = {"date_pred": pd.date_range(end=end_x, periods=5), "value": range(1, 6)}
|
|
new_data = {
|
|
"date": pd.date_range(start=start_x_plus_1, end=end_x_plus_5),
|
|
"value": range(6, 11),
|
|
}
|
|
|
|
freqai.dd.historic_predictions[pair] = pd.DataFrame(historic_data)
|
|
|
|
new_pred_df = pd.DataFrame(new_data)
|
|
dataframe = pd.DataFrame(new_data)
|
|
|
|
# Action
|
|
with patch("logging.Logger.warning") as mock_logger_warning:
|
|
freqai.dd.set_initial_return_values(pair, new_pred_df, dataframe)
|
|
|
|
# Assertions
|
|
hist_pred_df = freqai.dd.historic_predictions[pair]
|
|
model_return_df = freqai.dd.model_return_values[pair]
|
|
|
|
assert hist_pred_df["date_pred"].iloc[-1] == pd.Timestamp(end_x_plus_5)
|
|
assert "date_pred" in hist_pred_df.columns
|
|
assert hist_pred_df.shape[0] == 8
|
|
|
|
# compare values in model_return_df with hist_pred_df
|
|
assert (
|
|
model_return_df["value"].values == hist_pred_df.tail(len(dataframe))["value"].values
|
|
).all()
|
|
assert model_return_df.shape[0] == len(dataframe)
|
|
|
|
# Ensure logger error is not called
|
|
mock_logger_warning.assert_not_called()
|
|
|
|
|
|
def test_set_initial_return_values_warning(mocker, freqai_conf):
|
|
"""
|
|
Simple test of set_initial_return_values that hits the warning
|
|
associated with leaving a FreqAI bot offline so long that the
|
|
exchange candles have no common date with the historic predictions
|
|
"""
|
|
|
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
|
freqai = strategy.freqai
|
|
freqai.live = False
|
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
|
# Setup
|
|
pair = "BTC/USD"
|
|
end_x = "2023-08-31"
|
|
start_x_plus_1 = "2023-09-01"
|
|
end_x_plus_5 = "2023-09-05"
|
|
|
|
historic_data = {"date_pred": pd.date_range(end=end_x, periods=5), "value": range(1, 6)}
|
|
new_data = {
|
|
"date": pd.date_range(start=start_x_plus_1, end=end_x_plus_5),
|
|
"value": range(6, 11),
|
|
}
|
|
|
|
freqai.dd.historic_predictions[pair] = pd.DataFrame(historic_data)
|
|
|
|
new_pred_df = pd.DataFrame(new_data)
|
|
dataframe = pd.DataFrame(new_data)
|
|
|
|
# Action
|
|
with patch("logging.Logger.warning") as mock_logger_warning:
|
|
freqai.dd.set_initial_return_values(pair, new_pred_df, dataframe)
|
|
|
|
# Assertions
|
|
hist_pred_df = freqai.dd.historic_predictions[pair]
|
|
model_return_df = freqai.dd.model_return_values[pair]
|
|
|
|
assert hist_pred_df["date_pred"].iloc[-1] == pd.Timestamp(end_x_plus_5)
|
|
assert "date_pred" in hist_pred_df.columns
|
|
assert hist_pred_df.shape[0] == 10
|
|
|
|
# compare values in model_return_df with hist_pred_df
|
|
assert (
|
|
model_return_df["value"].values == hist_pred_df.tail(len(dataframe))["value"].values
|
|
).all()
|
|
assert model_return_df.shape[0] == len(dataframe)
|
|
|
|
# Ensure logger error is not called
|
|
mock_logger_warning.assert_called()
|