mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
5fce2c5712
Buy if at the low end of normal range and the price is increasing. Buy into extreme gains regardless of if it's on the low part of the range. Avoid buying when the price is on a long decrease even if it's low. Sell anytime the price is above the top end of normal range and the momentum slows. Sell on an extreme drop.
158 lines
5.0 KiB
Python
158 lines
5.0 KiB
Python
"""
|
|
Functions to analyze ticker data with indicators and produce buy and sell signals
|
|
"""
|
|
import logging
|
|
from datetime import timedelta
|
|
from enum import Enum
|
|
|
|
import arrow
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame, to_datetime
|
|
|
|
from freqtrade.exchange import get_ticker_history
|
|
from freqtrade.vendor.qtpylib.indicators import awesome_oscillator, crossed_above
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class SignalType(Enum):
|
|
""" Enum to distinguish between buy and sell signals """
|
|
BUY = "buy"
|
|
SELL = "sell"
|
|
|
|
|
|
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
|
"""
|
|
Analyses the trend for the given ticker history
|
|
:param ticker: See exchange.get_ticker_history
|
|
:return: DataFrame
|
|
"""
|
|
columns = {'C': 'close', 'V': 'volume', 'O': 'open', 'H': 'high', 'L': 'low', 'T': 'date'}
|
|
frame = DataFrame(ticker) \
|
|
.drop('BV', 1) \
|
|
.rename(columns=columns)
|
|
frame['date'] = to_datetime(frame['date'], utc=True, infer_datetime_format=True)
|
|
frame.sort_values('date', inplace=True)
|
|
return frame
|
|
|
|
|
|
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
"""
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
stoch = ta.STOCHF(dataframe)
|
|
dataframe['fastd'] = stoch['fastd']
|
|
dataframe['fastk'] = stoch['fastk']
|
|
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
|
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
|
dataframe['ao'] = awesome_oscillator(dataframe)
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
dataframe['macdhist'] = macd['macdhist']
|
|
hilbert = ta.HT_SINE(dataframe)
|
|
dataframe['htsine'] = hilbert['sine']
|
|
dataframe['htleadsine'] = hilbert['leadsine']
|
|
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
return dataframe
|
|
|
|
|
|
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['rsi'] < 35) &
|
|
(dataframe['fastd'] < 35) &
|
|
(dataframe['adx'] > 30) &
|
|
(dataframe['plus_di'] > 0.5)
|
|
) |
|
|
(
|
|
(dataframe['adx'] > 65) &
|
|
(dataframe['plus_di'] > 0.5)
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
def populate_sell_trend(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(
|
|
(crossed_above(dataframe['rsi'], 70)) |
|
|
(crossed_above(dataframe['fastd'], 70))
|
|
) &
|
|
(dataframe['adx'] > 10) &
|
|
(dataframe['minus_di'] > 0)
|
|
) |
|
|
(
|
|
(dataframe['adx'] > 70) &
|
|
(dataframe['minus_di'] > 0.5)
|
|
),
|
|
'sell'] = 1
|
|
return dataframe
|
|
|
|
|
|
def analyze_ticker(pair: str) -> DataFrame:
|
|
"""
|
|
Get ticker data for given currency pair, push it to a DataFrame and
|
|
add several TA indicators and buy signal to it
|
|
:return DataFrame with ticker data and indicator data
|
|
"""
|
|
ticker_hist = get_ticker_history(pair)
|
|
if not ticker_hist:
|
|
logger.warning('Empty ticker history for pair %s', pair)
|
|
return DataFrame()
|
|
|
|
dataframe = parse_ticker_dataframe(ticker_hist)
|
|
dataframe = populate_indicators(dataframe)
|
|
dataframe = populate_buy_trend(dataframe)
|
|
dataframe = populate_sell_trend(dataframe)
|
|
return dataframe
|
|
|
|
|
|
def get_signal(pair: str, signal: SignalType) -> bool:
|
|
"""
|
|
Calculates current signal based several technical analysis indicators
|
|
:param pair: pair in format BTC_ANT or BTC-ANT
|
|
:return: True if pair is good for buying, False otherwise
|
|
"""
|
|
try:
|
|
dataframe = analyze_ticker(pair)
|
|
except ValueError as ex:
|
|
logger.warning('Unable to analyze ticker for pair %s: %s', pair, str(ex))
|
|
return False
|
|
|
|
if dataframe.empty:
|
|
return False
|
|
|
|
latest = dataframe.iloc[-1]
|
|
|
|
# Check if dataframe is out of date
|
|
signal_date = arrow.get(latest['date'])
|
|
if signal_date < arrow.now() - timedelta(minutes=10):
|
|
return False
|
|
|
|
result = latest[signal.value] == 1
|
|
logger.debug('%s_trigger: %s (pair=%s, signal=%s)', signal.value, latest['date'], pair, result)
|
|
return result
|