freqtrade_origin/freqtrade/tests/optimize/test_backtest_detail.py
2018-10-29 20:17:15 +01:00

228 lines
8.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import logging
from unittest.mock import MagicMock
from typing import NamedTuple, List
from pandas import DataFrame
import pytest
import arrow
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.strategy.interface import SellType
from freqtrade.tests.conftest import patch_exchange, log_has
ticker_start_time = arrow.get(2018, 10, 3)
ticker_interval_in_minute = 60
class BTContainer(NamedTuple):
"""
NamedTuple Defining BacktestResults inputs.
"""
data: List[float]
stop_loss: float
roi: float
trades: int
profit_perc: float
sell_r: SellType
def _build_dataframe(ticker_with_signals):
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
frame = DataFrame.from_records(ticker_with_signals, columns=columns)
frame['date'] = frame['date'].apply(lambda x: ticker_start_time.shift(
minutes=(x * ticker_interval_in_minute)).datetime)
# Ensure floats are in place
for column in ['open', 'high', 'low', 'close', 'volume']:
frame[column] = frame[column].astype('float64')
return frame
data_profit = [
[0, 0.0009910, 0.001011, 0.00098618, 0.001000, 12345, 1, 0],
[1, 0.001000, 0.001010, 0.0009900, 0.0009900, 12345, 0, 0],
[2, 0.0009900, 0.001011, 0.00091618, 0.0009900, 12345, 0, 0],
[3, 0.001000, 0.001011, 0.00098618, 0.001100, 12345, 0, 1],
[4, 0.001000, 0.001011, 0.00098618, 0.0009900, 12345, 0, 0]]
tc_profit1 = BTContainer(data=data_profit, stop_loss=-0.01, roi=1, trades=1,
profit_perc=0.10557, sell_r=SellType.STOP_LOSS) # should be stoploss - drops 8%
tc_profit2 = BTContainer(data=data_profit, stop_loss=-0.10, roi=1,
trades=1, profit_perc=0.10557, sell_r=SellType.STOP_LOSS)
tc_loss0 = BTContainer(data=[
[0, 0.0009910, 0.001011, 0.00098618, 0.001000, 12345, 1, 0],
[1, 0.001000, 0.001010, 0.0009900, 0.001000, 12345, 0, 0],
[2, 0.001000, 0.001011, 0.0010618, 0.00091618, 12345, 0, 0],
[3, 0.001000, 0.001011, 0.00098618, 0.00091618, 12345, 0, 0],
[4, 0.001000, 0.001011, 0.00098618, 0.00091618, 12345, 0, 0]],
stop_loss=-0.05, roi=1, trades=1, profit_perc=-0.08839, sell_r=SellType.STOP_LOSS)
# Test 1 Minus 8% Close
# Candle Data for test 1 close at -8% (9200)
# Test with Stop-loss at 1%
# TC1: Stop-Loss Triggered 1% loss
tc1 = BTContainer(data=[
[0, 10000.0, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0],
[2, 9975, 10025, 9200, 9200, 12345, 0, 0],
[3, 9950, 10000, 9960, 9955, 12345, 0, 0],
[4, 9955, 9975, 9955, 9990, 12345, 0, 0],
[5, 9990, 9990, 9990, 9900, 12345, 0, 0]],
stop_loss=-0.01, roi=1, trades=1, profit_perc=-0.01, sell_r=SellType.STOP_LOSS)
# Test 2 Minus 4% Low, minus 1% close
# Candle Data for test 2
# Test with Stop-Loss at 3%
# TC2: Stop-Loss Triggered 3% Loss
tc2 = BTContainer(data=[
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0],
[2, 9975, 10025, 9925, 9950, 12345, 0, 0],
[3, 9950, 10000, 9600, 9925, 12345, 0, 0],
[4, 9925, 9975, 9875, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.03, sell_r=SellType.STOP_LOSS) #should be
# stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.007, sell_r=SellType.FORCE_SELL) #
# Test 3 Candle drops 4%, Recovers 1%.
# Entry Criteria Met
# Candle drops 20%
# Candle Data for test 3
# Test with Stop-Loss at 2%
# TC3: Trade-A: Stop-Loss Triggered 2% Loss
# Trade-B: Stop-Loss Triggered 2% Loss
tc3 = BTContainer(data=[
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0],
[2, 9975, 10025, 9600, 9950, 12345, 0, 0],
[3, 9950, 10000, 9900, 9925, 12345, 1, 0],
[4, 9950, 10000, 9900, 9925, 12345, 0, 0],
[5, 9925, 9975, 8000, 8000, 12345, 0, 0],
[6, 9900, 9950, 9950, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=1, trades=2, profit_perc=-0.04, sell_r=SellType.STOP_LOSS) #should be
# stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.02, sell_r=SellType.STOP_LOSS) #should be
# stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL) #
# Test 4 Minus 3% / recovery +15%
# Candle Data for test 4 Candle drops 3% Closed 15% up
# Test with Stop-loss at 2% ROI 6%
# TC4: Stop-Loss Triggered 2% Loss
tc4 = BTContainer(data=[
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0],
[2, 9975, 11500, 9700, 11500, 12345, 0, 0],
[3, 9950, 10000, 9900, 9925, 12345, 0, 0],
[4, 9925, 9975, 9875, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.02, sell_r=SellType.STOP_LOSS) #should be
# stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL)
# Test 5 / Drops 0.5% Closes +20%
# Candle Data for test 5
# Set stop-loss at 1% ROI 3%
# TC5: ROI triggers 3% Gain
tc5 = BTContainer(data=[
[0, 10000, 10050, 9960, 9975, 12345, 1, 0],
[1, 10000, 10050, 9960, 9975, 12345, 0, 0],
[2, 9975, 10050, 9950, 9975, 12345, 0, 0],
[3, 9950, 12000, 9950, 12000, 12345, 0, 0],
[4, 9925, 9975, 9945, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.01, roi=0.03, trades=1, profit_perc=0.03, sell_r=SellType.ROI) #should be
# stop_loss=-0.01, roi=0.03, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL)
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
# Candle Data for test 6
# Set stop-loss at 2% ROI at 5%
# TC6: Stop-Loss triggers 2% Loss
tc6 = BTContainer(data=[
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0],
[2, 9975, 10600, 9700, 10100, 12345, 0, 0],
[3, 9950, 10000, 9900, 9925, 12345, 0, 0],
[4, 9925, 9975, 9945, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=0.05, trades=1, profit_perc=-0.02, sell_r=SellType.STOP_LOSS) #should be
# stop_loss=-0.02, roi=0.05, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL) #
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
# Candle Data for test 7
# Set stop-loss at 2% ROI at 3%
# TC7: ROI Triggers 3% Gain
tc7 = BTContainer(data=[
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0],
[2, 9975, 10600, 9900, 10100, 12345, 0, 0],
[3, 9950, 10000, 9900, 9925, 12345, 0, 0],
[4, 9925, 9975, 9945, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=0.03, trades=1, profit_perc=0.03, sell_r=SellType.ROI) #should be
# stop_loss=-0.02, roi=0.03, trades=1, profit_perc=-0.012, sell_r=SellType.FORCE_SELL) #
TESTS = [
# tc_profit1,
# tc_profit2,
# tc_loss0,
tc1,
tc2,
tc3,
tc4,
tc5,
tc6,
tc7,
]
@pytest.mark.parametrize("data", TESTS)
def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
"""
run functional tests
"""
default_conf["stoploss"] = data.stop_loss
default_conf["minimal_roi"] = {"0": data.roi}
# mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
# TODO: don't Mock fee to for now
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.0))
patch_exchange(mocker)
frame = _build_dataframe(data.data)
backtesting = Backtesting(default_conf)
backtesting.advise_buy = lambda a, m: frame
backtesting.advise_sell = lambda a, m: frame
caplog.set_level(logging.DEBUG)
pair = 'UNITTEST/BTC'
# Dummy data as we mock the analyze functions
data_processed = {pair: DataFrame()}
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 10,
}
)
print(results.T)
assert len(results) == data.trades
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
if data.sell_r == SellType.STOP_LOSS:
assert log_has("Stop loss hit.", caplog.record_tuples)
else:
assert not log_has("Stop loss hit.", caplog.record_tuples)
log_test = (f'Force_selling still open trade UNITTEST/BTC with '
f'{results.iloc[-1].profit_percent} perc - {results.iloc[-1].profit_abs}')
if data.sell_r == SellType.FORCE_SELL:
assert log_has(log_test,
caplog.record_tuples)
else:
assert not log_has(log_test,
caplog.record_tuples)