freqtrade_origin/freqtrade/data/converter/orderflow.py

298 lines
12 KiB
Python

"""
Functions to convert orderflow data from public_trades
"""
import logging
import time
import typing
from collections import OrderedDict
from datetime import datetime
from typing import Tuple
import numpy as np
import pandas as pd
from freqtrade.constants import DEFAULT_ORDERFLOW_COLUMNS
from freqtrade.enums import RunMode
from freqtrade.exceptions import DependencyException
logger = logging.getLogger(__name__)
def _init_dataframe_with_trades_columns(dataframe: pd.DataFrame):
"""
Populates a dataframe with trades columns
:param dataframe: Dataframe to populate
"""
# Initialize columns with appropriate dtypes
dataframe["trades"] = np.nan
dataframe["orderflow"] = np.nan
dataframe["imbalances"] = np.nan
dataframe["stacked_imbalances_bid"] = np.nan
dataframe["stacked_imbalances_ask"] = np.nan
dataframe["max_delta"] = np.nan
dataframe["min_delta"] = np.nan
dataframe["bid"] = np.nan
dataframe["ask"] = np.nan
dataframe["delta"] = np.nan
dataframe["total_trades"] = np.nan
# Ensure the 'trades' column is of object type
dataframe["trades"] = dataframe["trades"].astype(object)
dataframe["orderflow"] = dataframe["orderflow"].astype(object)
dataframe["imbalances"] = dataframe["imbalances"].astype(object)
dataframe["stacked_imbalances_bid"] = dataframe["stacked_imbalances_bid"].astype(object)
dataframe["stacked_imbalances_ask"] = dataframe["stacked_imbalances_ask"].astype(object)
def _calculate_ohlcv_candle_start_and_end(df: pd.DataFrame, timeframe: str):
from freqtrade.exchange import timeframe_to_next_date, timeframe_to_resample_freq
timeframe_frequency = timeframe_to_resample_freq(timeframe)
# calculate ohlcv candle start and end
if df is not None and not df.empty:
df["datetime"] = pd.to_datetime(df["date"], unit="ms")
df["candle_start"] = df["datetime"].dt.floor(timeframe_frequency)
# used in _now_is_time_to_refresh_trades
df["candle_end"] = df["candle_start"].apply(
lambda candle_start: timeframe_to_next_date(timeframe, candle_start)
)
df.drop(columns=["datetime"], inplace=True)
def populate_dataframe_with_trades(
cached_grouped_trades: OrderedDict[Tuple[datetime, datetime], pd.DataFrame],
config,
dataframe: pd.DataFrame,
trades: pd.DataFrame,
) -> Tuple[pd.DataFrame, OrderedDict[Tuple[datetime, datetime], pd.DataFrame]]:
"""
Populates a dataframe with trades
:param dataframe: Dataframe to populate
:param trades: Trades to populate with
:return: Dataframe with trades populated
"""
timeframe = config["timeframe"]
config_orderflow = config["orderflow"]
# create columns for trades
_init_dataframe_with_trades_columns(dataframe)
if trades is None or trades.empty:
return dataframe, cached_grouped_trades
try:
start_time = time.time()
# calculate ohlcv candle start and end
_calculate_ohlcv_candle_start_and_end(trades, timeframe)
# get date of earliest max_candles candle
max_candles = config_orderflow["max_candles"]
start_date = dataframe.tail(max_candles).date.iat[0]
# slice of trades that are before current ohlcv candles to make groupby faster
trades = trades.loc[trades["candle_start"] >= start_date]
trades.reset_index(inplace=True, drop=True)
# group trades by candle start
trades_grouped_by_candle_start = trades.groupby("candle_start", group_keys=False)
# Create Series to hold complex data
trades_series = pd.Series(index=dataframe.index, dtype=object)
orderflow_series = pd.Series(index=dataframe.index, dtype=object)
imbalances_series = pd.Series(index=dataframe.index, dtype=object)
stacked_imbalances_bid_series = pd.Series(index=dataframe.index, dtype=object)
stacked_imbalances_ask_series = pd.Series(index=dataframe.index, dtype=object)
trades_grouped_by_candle_start = trades.groupby("candle_start", group_keys=False)
for candle_start, trades_grouped_df in trades_grouped_by_candle_start:
is_between = candle_start == dataframe["date"]
if is_between.any():
from freqtrade.exchange import timeframe_to_next_date
candle_next = timeframe_to_next_date(timeframe, typing.cast(datetime, candle_start))
if candle_next not in trades_grouped_by_candle_start.groups:
logger.warning(
f"candle at {candle_start} with {len(trades_grouped_df)} trades "
f"might be unfinished, because no finished trades at {candle_next}"
)
indices = dataframe.index[is_between].tolist()
# Add trades to each candle
trades_series.loc[indices] = [
trades_grouped_df.drop(columns=["candle_start", "candle_end"]).to_dict(
orient="records"
)
]
# Use caching mechanism
if (candle_start, candle_next) in cached_grouped_trades:
cache_entry = cached_grouped_trades[
(typing.cast(datetime, candle_start), candle_next)
]
# dataframe.loc[is_between] = cache_entry # doesn't take, so we need workaround:
# Create a dictionary of the column values to be assigned
update_dict = {c: cache_entry[c].iat[0] for c in cache_entry.columns}
# Assign the values using the update_dict
dataframe.loc[is_between, update_dict.keys()] = pd.DataFrame(
[update_dict], index=dataframe.loc[is_between].index
)
continue
# Calculate orderflow for each candle
orderflow = trades_to_volumeprofile_with_total_delta_bid_ask(
trades_grouped_df, scale=config_orderflow["scale"]
)
orderflow_series.loc[indices] = [orderflow.to_dict(orient="index")]
# Calculate imbalances for each candle's orderflow
imbalances = trades_orderflow_to_imbalances(
orderflow,
imbalance_ratio=config_orderflow["imbalance_ratio"],
imbalance_volume=config_orderflow["imbalance_volume"],
)
imbalances_series.loc[indices] = [imbalances.to_dict(orient="index")]
stacked_imbalance_range = config_orderflow["stacked_imbalance_range"]
stacked_imbalances_bid_series.loc[indices] = [
stacked_imbalance_bid(
imbalances, stacked_imbalance_range=stacked_imbalance_range
)
]
stacked_imbalances_ask_series.loc[indices] = [
stacked_imbalance_ask(
imbalances, stacked_imbalance_range=stacked_imbalance_range
)
]
bid = np.where(
trades_grouped_df["side"].str.contains("sell"), trades_grouped_df["amount"], 0
)
ask = np.where(
trades_grouped_df["side"].str.contains("buy"), trades_grouped_df["amount"], 0
)
deltas_per_trade = ask - bid
min_delta = deltas_per_trade.cumsum().min()
max_delta = deltas_per_trade.cumsum().max()
dataframe.loc[indices, "max_delta"] = max_delta
dataframe.loc[indices, "min_delta"] = min_delta
dataframe.loc[indices, "bid"] = bid.sum()
dataframe.loc[indices, "ask"] = ask.sum()
dataframe.loc[indices, "delta"] = (
dataframe.loc[indices, "ask"] - dataframe.loc[indices, "bid"]
)
dataframe.loc[indices, "total_trades"] = len(trades_grouped_df)
# Cache the result
cached_grouped_trades[(typing.cast(datetime, candle_start), candle_next)] = (
dataframe.loc[is_between].copy()
)
# Maintain cache size
if (
config.get("runmode") in (RunMode.DRY_RUN, RunMode.LIVE)
and len(cached_grouped_trades) > config_orderflow["cache_size"]
):
cached_grouped_trades.popitem(last=False)
else:
logger.debug(f"Found NO candles for trades starting with {candle_start}")
logger.debug(f"trades.groups_keys in {time.time() - start_time} seconds")
# Merge the complex data Series back into the DataFrame
dataframe["trades"] = trades_series
dataframe["orderflow"] = orderflow_series
dataframe["imbalances"] = imbalances_series
dataframe["stacked_imbalances_bid"] = stacked_imbalances_bid_series
dataframe["stacked_imbalances_ask"] = stacked_imbalances_ask_series
except Exception as e:
logger.exception("Error populating dataframe with trades")
raise DependencyException(e)
return dataframe, cached_grouped_trades
def trades_to_volumeprofile_with_total_delta_bid_ask(
trades: pd.DataFrame, scale: float
) -> pd.DataFrame:
"""
:param trades: dataframe
:param scale: scale aka bin size e.g. 0.5
:return: trades binned to levels according to scale aka orderflow
"""
df = pd.DataFrame([], columns=DEFAULT_ORDERFLOW_COLUMNS)
# create bid, ask where side is sell or buy
df["bid_amount"] = np.where(trades["side"].str.contains("sell"), trades["amount"], 0)
df["ask_amount"] = np.where(trades["side"].str.contains("buy"), trades["amount"], 0)
df["bid"] = np.where(trades["side"].str.contains("sell"), 1, 0)
df["ask"] = np.where(trades["side"].str.contains("buy"), 1, 0)
# round the prices to the nearest multiple of the scale
df["price"] = ((trades["price"] / scale).round() * scale).astype("float64").values
if df.empty:
df["total"] = np.nan
df["delta"] = np.nan
return df
df["delta"] = df["ask_amount"] - df["bid_amount"]
df["total_volume"] = df["ask_amount"] + df["bid_amount"]
df["total_trades"] = df["ask"] + df["bid"]
# group to bins aka apply scale
df = df.groupby("price").sum(numeric_only=True)
return df
def trades_orderflow_to_imbalances(df: pd.DataFrame, imbalance_ratio: int, imbalance_volume: int):
"""
:param df: dataframes with bid and ask
:param imbalance_ratio: imbalance_ratio e.g. 3
:param imbalance_volume: imbalance volume e.g. 10
:return: dataframe with bid and ask imbalance
"""
bid = df.bid
# compares bid and ask diagonally
ask = df.ask.shift(-1)
bid_imbalance = (bid / ask) > (imbalance_ratio)
# overwrite bid_imbalance with False if volume is not big enough
bid_imbalance_filtered = np.where(df.total_volume < imbalance_volume, False, bid_imbalance)
ask_imbalance = (ask / bid) > (imbalance_ratio)
# overwrite ask_imbalance with False if volume is not big enough
ask_imbalance_filtered = np.where(df.total_volume < imbalance_volume, False, ask_imbalance)
dataframe = pd.DataFrame(
{"bid_imbalance": bid_imbalance_filtered, "ask_imbalance": ask_imbalance_filtered},
index=df.index,
)
return dataframe
def stacked_imbalance(
df: pd.DataFrame, label: str, stacked_imbalance_range: int, should_reverse: bool
):
"""
y * (y.groupby((y != y.shift()).cumsum()).cumcount() + 1)
https://stackoverflow.com/questions/27626542/counting-consecutive-positive-values-in-python-pandas-array
"""
imbalance = df[f"{label}_imbalance"]
int_series = pd.Series(np.where(imbalance, 1, 0))
stacked = int_series * (
int_series.groupby((int_series != int_series.shift()).cumsum()).cumcount() + 1
)
max_stacked_imbalance_idx = stacked.index[stacked >= stacked_imbalance_range]
stacked_imbalance_price = np.nan
if not max_stacked_imbalance_idx.empty:
idx = (
max_stacked_imbalance_idx[0]
if not should_reverse
else np.flipud(max_stacked_imbalance_idx)[0]
)
stacked_imbalance_price = imbalance.index[idx]
return stacked_imbalance_price
def stacked_imbalance_ask(df: pd.DataFrame, stacked_imbalance_range: int):
return stacked_imbalance(df, "ask", stacked_imbalance_range, should_reverse=True)
def stacked_imbalance_bid(df: pd.DataFrame, stacked_imbalance_range: int):
return stacked_imbalance(df, "bid", stacked_imbalance_range, should_reverse=False)