mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
964bf76469
otherwise their order is reversed before calling LookaheadAnalysis for no good reason
203 lines
9.1 KiB
Python
203 lines
9.1 KiB
Python
import logging
|
|
import time
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List
|
|
|
|
import pandas as pd
|
|
|
|
from freqtrade.constants import Config
|
|
from freqtrade.exceptions import OperationalException
|
|
from freqtrade.optimize.lookahead_analysis import LookaheadAnalysis
|
|
from freqtrade.resolvers import StrategyResolver
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LookaheadAnalysisSubFunctions:
|
|
|
|
@staticmethod
|
|
def text_table_lookahead_analysis_instances(
|
|
config: Dict[str, Any],
|
|
lookahead_instances: List[LookaheadAnalysis]):
|
|
headers = ['filename', 'strategy', 'has_bias', 'total_signals',
|
|
'biased_entry_signals', 'biased_exit_signals', 'biased_indicators']
|
|
data = []
|
|
for inst in lookahead_instances:
|
|
if config['minimum_trade_amount'] > inst.current_analysis.total_signals:
|
|
data.append(
|
|
[
|
|
inst.strategy_obj['location'].parts[-1],
|
|
inst.strategy_obj['name'],
|
|
"too few trades caught "
|
|
f"({inst.current_analysis.total_signals}/{config['minimum_trade_amount']})."
|
|
f"Test failed."
|
|
]
|
|
)
|
|
elif inst.failed_bias_check:
|
|
data.append(
|
|
[
|
|
inst.strategy_obj['location'].parts[-1],
|
|
inst.strategy_obj['name'],
|
|
'error while checking'
|
|
]
|
|
)
|
|
else:
|
|
data.append(
|
|
[
|
|
inst.strategy_obj['location'].parts[-1],
|
|
inst.strategy_obj['name'],
|
|
inst.current_analysis.has_bias,
|
|
inst.current_analysis.total_signals,
|
|
inst.current_analysis.false_entry_signals,
|
|
inst.current_analysis.false_exit_signals,
|
|
", ".join(inst.current_analysis.false_indicators)
|
|
]
|
|
)
|
|
from tabulate import tabulate
|
|
table = tabulate(data, headers=headers, tablefmt="orgtbl")
|
|
print(table)
|
|
return table, headers, data
|
|
|
|
@staticmethod
|
|
def export_to_csv(config: Dict[str, Any], lookahead_analysis: List[LookaheadAnalysis]):
|
|
def add_or_update_row(df, row_data):
|
|
if (
|
|
(df['filename'] == row_data['filename']) &
|
|
(df['strategy'] == row_data['strategy'])
|
|
).any():
|
|
# Update existing row
|
|
pd_series = pd.DataFrame([row_data])
|
|
df.loc[
|
|
(df['filename'] == row_data['filename']) &
|
|
(df['strategy'] == row_data['strategy'])
|
|
] = pd_series
|
|
else:
|
|
# Add new row
|
|
df = pd.concat([df, pd.DataFrame([row_data], columns=df.columns)])
|
|
|
|
return df
|
|
|
|
if Path(config['lookahead_analysis_exportfilename']).exists():
|
|
# Read CSV file into a pandas dataframe
|
|
csv_df = pd.read_csv(config['lookahead_analysis_exportfilename'])
|
|
else:
|
|
# Create a new empty DataFrame with the desired column names and set the index
|
|
csv_df = pd.DataFrame(columns=[
|
|
'filename', 'strategy', 'has_bias', 'total_signals',
|
|
'biased_entry_signals', 'biased_exit_signals', 'biased_indicators'
|
|
],
|
|
index=None)
|
|
|
|
for inst in lookahead_analysis:
|
|
# only update if
|
|
if (inst.current_analysis.total_signals > config['minimum_trade_amount']
|
|
and inst.failed_bias_check is not True):
|
|
new_row_data = {'filename': inst.strategy_obj['location'].parts[-1],
|
|
'strategy': inst.strategy_obj['name'],
|
|
'has_bias': inst.current_analysis.has_bias,
|
|
'total_signals':
|
|
int(inst.current_analysis.total_signals),
|
|
'biased_entry_signals':
|
|
int(inst.current_analysis.false_entry_signals),
|
|
'biased_exit_signals':
|
|
int(inst.current_analysis.false_exit_signals),
|
|
'biased_indicators':
|
|
",".join(inst.current_analysis.false_indicators)}
|
|
csv_df = add_or_update_row(csv_df, new_row_data)
|
|
|
|
# Fill NaN values with a default value (e.g., 0)
|
|
csv_df['total_signals'] = csv_df['total_signals'].fillna(0)
|
|
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].fillna(0)
|
|
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].fillna(0)
|
|
|
|
# Convert columns to integers
|
|
csv_df['total_signals'] = csv_df['total_signals'].astype(int)
|
|
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].astype(int)
|
|
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].astype(int)
|
|
|
|
logger.info(f"saving {config['lookahead_analysis_exportfilename']}")
|
|
csv_df.to_csv(config['lookahead_analysis_exportfilename'], index=False)
|
|
|
|
@staticmethod
|
|
def calculate_config_overrides(config: Config):
|
|
if config['targeted_trade_amount'] < config['minimum_trade_amount']:
|
|
# this combo doesn't make any sense.
|
|
raise OperationalException(
|
|
"Targeted trade amount can't be smaller than minimum trade amount."
|
|
)
|
|
if len(config['pairs']) > config['max_open_trades']:
|
|
logger.info('Max_open_trades were less than amount of pairs. '
|
|
'Set max_open_trades to amount of pairs just to avoid false positives.')
|
|
config['max_open_trades'] = len(config['pairs'])
|
|
|
|
min_dry_run_wallet = 1000000000
|
|
if config['dry_run_wallet'] < min_dry_run_wallet:
|
|
logger.info('Dry run wallet was not set to 1 billion, pushing it up there '
|
|
'just to avoid false positives')
|
|
config['dry_run_wallet'] = min_dry_run_wallet
|
|
|
|
# enforce cache to be 'none', shift it to 'none' if not already
|
|
# (since the default value is 'day')
|
|
if config.get('backtest_cache') is None:
|
|
config['backtest_cache'] = 'none'
|
|
elif config['backtest_cache'] != 'none':
|
|
logger.info(f"backtest_cache = "
|
|
f"{config['backtest_cache']} detected. "
|
|
f"Inside lookahead-analysis it is enforced to be 'none'. "
|
|
f"Changed it to 'none'")
|
|
config['backtest_cache'] = 'none'
|
|
return config
|
|
|
|
@staticmethod
|
|
def initialize_single_lookahead_analysis(config: Config, strategy_obj: Dict[str, Any]):
|
|
|
|
logger.info(f"Bias test of {Path(strategy_obj['location']).name} started.")
|
|
start = time.perf_counter()
|
|
current_instance = LookaheadAnalysis(config, strategy_obj)
|
|
current_instance.start()
|
|
elapsed = time.perf_counter() - start
|
|
logger.info(f"Checking look ahead bias via backtests "
|
|
f"of {Path(strategy_obj['location']).name} "
|
|
f"took {elapsed:.0f} seconds.")
|
|
return current_instance
|
|
|
|
@staticmethod
|
|
def start(config: Config):
|
|
config = LookaheadAnalysisSubFunctions.calculate_config_overrides(config)
|
|
|
|
strategy_objs = StrategyResolver.search_all_objects(
|
|
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
|
|
|
|
lookaheadAnalysis_instances = []
|
|
|
|
# unify --strategy and --strategy_list to one list
|
|
if not (strategy_list := config.get('strategy_list', [])):
|
|
if config.get('strategy') is None:
|
|
raise OperationalException(
|
|
"No Strategy specified. Please specify a strategy via --strategy or "
|
|
"--strategy_list"
|
|
)
|
|
strategy_list = [config['strategy']]
|
|
|
|
# check if strategies can be properly loaded, only check them if they can be.
|
|
for strat in strategy_list:
|
|
for strategy_obj in strategy_objs:
|
|
if strategy_obj['name'] == strat and strategy_obj not in strategy_list:
|
|
lookaheadAnalysis_instances.append(
|
|
LookaheadAnalysisSubFunctions.initialize_single_lookahead_analysis(
|
|
config, strategy_obj))
|
|
break
|
|
|
|
# report the results
|
|
if lookaheadAnalysis_instances:
|
|
LookaheadAnalysisSubFunctions.text_table_lookahead_analysis_instances(
|
|
config, lookaheadAnalysis_instances)
|
|
if config.get('lookahead_analysis_exportfilename') is not None:
|
|
LookaheadAnalysisSubFunctions.export_to_csv(config, lookaheadAnalysis_instances)
|
|
else:
|
|
logger.error("There were no strategies specified neither through "
|
|
"--strategy nor through "
|
|
"--strategy_list "
|
|
"or timeframe was not specified.")
|