freqtrade_origin/freqtrade/freqai/prediction_models/ReinforcementLearner_multiproc.py
2023-03-20 15:54:58 +01:00

68 lines
3.0 KiB
Python

import logging
from typing import Any, Dict
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env import VecMonitor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
logger = logging.getLogger(__name__)
class ReinforcementLearner_multiproc(ReinforcementLearner):
"""
Demonstration of how to build vectorized environments
"""
def set_train_and_eval_environments(self, data_dictionary: Dict[str, Any],
prices_train: DataFrame, prices_test: DataFrame,
dk: FreqaiDataKitchen):
"""
User can override this if they are using a custom MyRLEnv
:param data_dictionary: dict = common data dictionary containing train and test
features/labels/weights.
:param prices_train/test: DataFrame = dataframe comprised of the prices to be used in
the environment during training
or testing
:param dk: FreqaiDataKitchen = the datakitchen for the current pair
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
if self.train_env:
self.train_env.close()
if self.eval_env:
self.eval_env.close()
env_info = self.pack_env_dict(dk.pair)
eval_freq = len(train_df) // self.max_threads
env_id = "train_env"
self.train_env = VecMonitor(SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
train_df, prices_train,
env_info=env_info) for i
in range(self.max_threads)]))
eval_env_id = 'eval_env'
self.eval_env = VecMonitor(SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
test_df, prices_test,
env_info=env_info) for i
in range(self.max_threads)]))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=str(dk.data_path))
# TENSORBOARD CALLBACK DOES NOT RECOMMENDED TO USE WITH MULTIPLE ENVS, IT WILL RETURN FALSE INFORMATIONS, NEVERTHLESS NOT THREAD SAFE WITH SB3!!!
actions = self.train_env.env_method("get_actions")[0]
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)