mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 12:13:57 +00:00
525 lines
20 KiB
Python
525 lines
20 KiB
Python
# pragma pylint: disable=W0603
|
|
"""Edge positioning package"""
|
|
|
|
import logging
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
from datetime import timedelta
|
|
from typing import Any, Dict, List, NamedTuple
|
|
|
|
import numpy as np
|
|
import utils_find_1st as utf1st
|
|
from pandas import DataFrame
|
|
|
|
from freqtrade.configuration import TimeRange
|
|
from freqtrade.constants import DATETIME_PRINT_FORMAT, UNLIMITED_STAKE_AMOUNT, Config
|
|
from freqtrade.data.history import get_timerange, load_data, refresh_data
|
|
from freqtrade.enums import CandleType, ExitType, RunMode
|
|
from freqtrade.exceptions import OperationalException
|
|
from freqtrade.exchange import timeframe_to_seconds
|
|
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
|
from freqtrade.strategy.interface import IStrategy
|
|
from freqtrade.util import dt_now
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PairInfo(NamedTuple):
|
|
stoploss: float
|
|
winrate: float
|
|
risk_reward_ratio: float
|
|
required_risk_reward: float
|
|
expectancy: float
|
|
nb_trades: int
|
|
avg_trade_duration: float
|
|
|
|
|
|
class Edge:
|
|
"""
|
|
Calculates Win Rate, Risk Reward Ratio, Expectancy
|
|
against historical data for a give set of markets and a strategy
|
|
it then adjusts stoploss and position size accordingly
|
|
and force it into the strategy
|
|
Author: https://github.com/mishaker
|
|
"""
|
|
|
|
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
|
|
|
def __init__(self, config: Config, exchange, strategy) -> None:
|
|
self.config = config
|
|
self.exchange = exchange
|
|
self.strategy: IStrategy = strategy
|
|
|
|
self.edge_config = self.config.get("edge", {})
|
|
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
|
self._final_pairs: list = []
|
|
|
|
# checking max_open_trades. it should be -1 as with Edge
|
|
# the number of trades is determined by position size
|
|
if self.config["max_open_trades"] != float("inf"):
|
|
logger.critical("max_open_trades should be -1 in config !")
|
|
|
|
if self.config["stake_amount"] != UNLIMITED_STAKE_AMOUNT:
|
|
raise OperationalException("Edge works only with unlimited stake amount")
|
|
|
|
self._capital_ratio: float = self.config["tradable_balance_ratio"]
|
|
self._allowed_risk: float = self.edge_config.get("allowed_risk")
|
|
self._since_number_of_days: int = self.edge_config.get("calculate_since_number_of_days", 14)
|
|
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
|
self._refresh_pairs = True
|
|
|
|
self._stoploss_range_min = float(self.edge_config.get("stoploss_range_min", -0.01))
|
|
self._stoploss_range_max = float(self.edge_config.get("stoploss_range_max", -0.05))
|
|
self._stoploss_range_step = float(self.edge_config.get("stoploss_range_step", -0.001))
|
|
|
|
# calculating stoploss range
|
|
self._stoploss_range = np.arange(
|
|
self._stoploss_range_min, self._stoploss_range_max, self._stoploss_range_step
|
|
)
|
|
|
|
self._timerange: TimeRange = TimeRange.parse_timerange(
|
|
f"{(dt_now() - timedelta(days=self._since_number_of_days)).strftime('%Y%m%d')}-"
|
|
)
|
|
if config.get("fee"):
|
|
self.fee = config["fee"]
|
|
else:
|
|
try:
|
|
self.fee = self.exchange.get_fee(
|
|
symbol=expand_pairlist(
|
|
self.config["exchange"]["pair_whitelist"], list(self.exchange.markets)
|
|
)[0]
|
|
)
|
|
except IndexError:
|
|
self.fee = None
|
|
|
|
def calculate(self, pairs: List[str]) -> bool:
|
|
if self.fee is None and pairs:
|
|
self.fee = self.exchange.get_fee(pairs[0])
|
|
|
|
heartbeat = self.edge_config.get("process_throttle_secs")
|
|
|
|
if (self._last_updated > 0) and (
|
|
self._last_updated + heartbeat > int(dt_now().timestamp())
|
|
):
|
|
return False
|
|
|
|
data: Dict[str, Any] = {}
|
|
logger.info("Using stake_currency: %s ...", self.config["stake_currency"])
|
|
logger.info("Using local backtesting data (using whitelist in given config) ...")
|
|
|
|
if self._refresh_pairs:
|
|
timerange_startup = deepcopy(self._timerange)
|
|
timerange_startup.subtract_start(
|
|
timeframe_to_seconds(self.strategy.timeframe) * self.strategy.startup_candle_count
|
|
)
|
|
refresh_data(
|
|
datadir=self.config["datadir"],
|
|
pairs=pairs,
|
|
exchange=self.exchange,
|
|
timeframe=self.strategy.timeframe,
|
|
timerange=timerange_startup,
|
|
data_format=self.config["dataformat_ohlcv"],
|
|
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
|
|
)
|
|
# Download informative pairs too
|
|
res = defaultdict(list)
|
|
for pair, timeframe, _ in self.strategy.gather_informative_pairs():
|
|
res[timeframe].append(pair)
|
|
for timeframe, inf_pairs in res.items():
|
|
timerange_startup = deepcopy(self._timerange)
|
|
timerange_startup.subtract_start(
|
|
timeframe_to_seconds(timeframe) * self.strategy.startup_candle_count
|
|
)
|
|
refresh_data(
|
|
datadir=self.config["datadir"],
|
|
pairs=inf_pairs,
|
|
exchange=self.exchange,
|
|
timeframe=timeframe,
|
|
timerange=timerange_startup,
|
|
data_format=self.config["dataformat_ohlcv"],
|
|
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
|
|
)
|
|
|
|
data = load_data(
|
|
datadir=self.config["datadir"],
|
|
pairs=pairs,
|
|
timeframe=self.strategy.timeframe,
|
|
timerange=self._timerange,
|
|
startup_candles=self.strategy.startup_candle_count,
|
|
data_format=self.config["dataformat_ohlcv"],
|
|
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
|
|
)
|
|
|
|
if not data:
|
|
# Reinitializing cached pairs
|
|
self._cached_pairs = {}
|
|
logger.critical("No data found. Edge is stopped ...")
|
|
return False
|
|
# Fake run-mode to Edge
|
|
prior_rm = self.config["runmode"]
|
|
self.config["runmode"] = RunMode.EDGE
|
|
preprocessed = self.strategy.advise_all_indicators(data)
|
|
self.config["runmode"] = prior_rm
|
|
|
|
# Print timeframe
|
|
min_date, max_date = get_timerange(preprocessed)
|
|
logger.info(
|
|
f"Measuring data from {min_date.strftime(DATETIME_PRINT_FORMAT)} "
|
|
f"up to {max_date.strftime(DATETIME_PRINT_FORMAT)} "
|
|
f"({(max_date - min_date).days} days).."
|
|
)
|
|
# TODO: Should edge support shorts? needs to be investigated further
|
|
# * (add enter_short exit_short)
|
|
headers = ["date", "open", "high", "low", "close", "enter_long", "exit_long"]
|
|
|
|
trades: list = []
|
|
for pair, pair_data in preprocessed.items():
|
|
# Sorting dataframe by date and reset index
|
|
pair_data = pair_data.sort_values(by=["date"])
|
|
pair_data = pair_data.reset_index(drop=True)
|
|
|
|
df_analyzed = self.strategy.ft_advise_signals(pair_data, {"pair": pair})[headers].copy()
|
|
|
|
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
|
|
|
|
# If no trade found then exit
|
|
if len(trades) == 0:
|
|
logger.info("No trades found.")
|
|
return False
|
|
|
|
# Fill missing, calculable columns, profit, duration , abs etc.
|
|
trades_df = self._fill_calculable_fields(DataFrame(trades))
|
|
self._cached_pairs = self._process_expectancy(trades_df)
|
|
self._last_updated = int(dt_now().timestamp())
|
|
|
|
return True
|
|
|
|
def stake_amount(
|
|
self, pair: str, free_capital: float, total_capital: float, capital_in_trade: float
|
|
) -> float:
|
|
stoploss = self.get_stoploss(pair)
|
|
available_capital = (total_capital + capital_in_trade) * self._capital_ratio
|
|
allowed_capital_at_risk = available_capital * self._allowed_risk
|
|
max_position_size = abs(allowed_capital_at_risk / stoploss)
|
|
# Position size must be below available capital.
|
|
position_size = min(min(max_position_size, free_capital), available_capital)
|
|
if pair in self._cached_pairs:
|
|
logger.info(
|
|
"winrate: %s, expectancy: %s, position size: %s, pair: %s,"
|
|
" capital in trade: %s, free capital: %s, total capital: %s,"
|
|
" stoploss: %s, available capital: %s.",
|
|
self._cached_pairs[pair].winrate,
|
|
self._cached_pairs[pair].expectancy,
|
|
position_size,
|
|
pair,
|
|
capital_in_trade,
|
|
free_capital,
|
|
total_capital,
|
|
stoploss,
|
|
available_capital,
|
|
)
|
|
return round(position_size, 15)
|
|
|
|
def get_stoploss(self, pair: str) -> float:
|
|
if pair in self._cached_pairs:
|
|
return self._cached_pairs[pair].stoploss
|
|
else:
|
|
logger.warning(
|
|
f"Tried to access stoploss of non-existing pair {pair}, "
|
|
"strategy stoploss is returned instead."
|
|
)
|
|
return self.strategy.stoploss
|
|
|
|
def adjust(self, pairs: List[str]) -> list:
|
|
"""
|
|
Filters out and sorts "pairs" according to Edge calculated pairs
|
|
"""
|
|
final = []
|
|
for pair, info in self._cached_pairs.items():
|
|
if (
|
|
info.expectancy > float(self.edge_config.get("minimum_expectancy", 0.2))
|
|
and info.winrate > float(self.edge_config.get("minimum_winrate", 0.60))
|
|
and pair in pairs
|
|
):
|
|
final.append(pair)
|
|
|
|
if self._final_pairs != final:
|
|
self._final_pairs = final
|
|
if self._final_pairs:
|
|
logger.info(
|
|
"Minimum expectancy and minimum winrate are met only for %s,"
|
|
" so other pairs are filtered out.",
|
|
self._final_pairs,
|
|
)
|
|
else:
|
|
logger.info(
|
|
"Edge removed all pairs as no pair with minimum expectancy "
|
|
"and minimum winrate was found !"
|
|
)
|
|
|
|
return self._final_pairs
|
|
|
|
def accepted_pairs(self) -> List[Dict[str, Any]]:
|
|
"""
|
|
return a list of accepted pairs along with their winrate, expectancy and stoploss
|
|
"""
|
|
final = []
|
|
for pair, info in self._cached_pairs.items():
|
|
if info.expectancy > float(
|
|
self.edge_config.get("minimum_expectancy", 0.2)
|
|
) and info.winrate > float(self.edge_config.get("minimum_winrate", 0.60)):
|
|
final.append(
|
|
{
|
|
"Pair": pair,
|
|
"Winrate": info.winrate,
|
|
"Expectancy": info.expectancy,
|
|
"Stoploss": info.stoploss,
|
|
}
|
|
)
|
|
return final
|
|
|
|
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
|
|
"""
|
|
The result frame contains a number of columns that are calculable
|
|
from other columns. These are left blank till all rows are added,
|
|
to be populated in single vector calls.
|
|
|
|
Columns to be populated are:
|
|
- Profit
|
|
- trade duration
|
|
- profit abs
|
|
:param result Dataframe
|
|
:return: result Dataframe
|
|
"""
|
|
# We set stake amount to an arbitrary amount, as it doesn't change the calculation.
|
|
# All returned values are relative, they are defined as ratios.
|
|
stake = 0.015
|
|
|
|
result["trade_duration"] = result["close_date"] - result["open_date"]
|
|
|
|
result["trade_duration"] = result["trade_duration"].map(
|
|
lambda x: int(x.total_seconds() / 60)
|
|
)
|
|
|
|
# Spends, Takes, Profit, Absolute Profit
|
|
|
|
# Buy Price
|
|
result["buy_vol"] = stake / result["open_rate"] # How many target are we buying
|
|
result["buy_fee"] = stake * self.fee
|
|
result["buy_spend"] = stake + result["buy_fee"] # How much we're spending
|
|
|
|
# Sell price
|
|
result["sell_sum"] = result["buy_vol"] * result["close_rate"]
|
|
result["sell_fee"] = result["sell_sum"] * self.fee
|
|
result["sell_take"] = result["sell_sum"] - result["sell_fee"]
|
|
|
|
# profit_ratio
|
|
result["profit_ratio"] = (result["sell_take"] - result["buy_spend"]) / result["buy_spend"]
|
|
|
|
# Absolute profit
|
|
result["profit_abs"] = result["sell_take"] - result["buy_spend"]
|
|
|
|
return result
|
|
|
|
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
|
|
"""
|
|
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
|
|
The calculation will be done per pair and per strategy.
|
|
"""
|
|
# Removing pairs having less than min_trades_number
|
|
min_trades_number = self.edge_config.get("min_trade_number", 10)
|
|
results = results.groupby(["pair", "stoploss"]).filter(lambda x: len(x) > min_trades_number)
|
|
###################################
|
|
|
|
# Removing outliers (Only Pumps) from the dataset
|
|
# The method to detect outliers is to calculate standard deviation
|
|
# Then every value more than (standard deviation + 2*average) is out (pump)
|
|
#
|
|
# Removing Pumps
|
|
if self.edge_config.get("remove_pumps", False):
|
|
results = results[
|
|
results["profit_abs"]
|
|
< 2 * results["profit_abs"].std() + results["profit_abs"].mean()
|
|
]
|
|
##########################################################################
|
|
|
|
# Removing trades having a duration more than X minutes (set in config)
|
|
max_trade_duration = self.edge_config.get("max_trade_duration_minute", 1440)
|
|
results = results[results.trade_duration < max_trade_duration]
|
|
#######################################################################
|
|
|
|
if results.empty:
|
|
return {}
|
|
|
|
groupby_aggregator = {
|
|
"profit_abs": [
|
|
("nb_trades", "count"), # number of all trades
|
|
("profit_sum", lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
|
|
("loss_sum", lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
|
|
("nb_win_trades", lambda x: x[x > 0].count()), # number of winning trades
|
|
],
|
|
"trade_duration": [("avg_trade_duration", "mean")],
|
|
}
|
|
|
|
# Group by (pair and stoploss) by applying above aggregator
|
|
df = (
|
|
results.groupby(["pair", "stoploss"])[["profit_abs", "trade_duration"]]
|
|
.agg(groupby_aggregator)
|
|
.reset_index(col_level=1)
|
|
)
|
|
|
|
# Dropping level 0 as we don't need it
|
|
df.columns = df.columns.droplevel(0)
|
|
|
|
# Calculating number of losing trades, average win and average loss
|
|
df["nb_loss_trades"] = df["nb_trades"] - df["nb_win_trades"]
|
|
df["average_win"] = np.where(
|
|
df["nb_win_trades"] == 0, 0.0, df["profit_sum"] / df["nb_win_trades"]
|
|
)
|
|
df["average_loss"] = np.where(
|
|
df["nb_loss_trades"] == 0, 0.0, df["loss_sum"] / df["nb_loss_trades"]
|
|
)
|
|
|
|
# Win rate = number of profitable trades / number of trades
|
|
df["winrate"] = df["nb_win_trades"] / df["nb_trades"]
|
|
|
|
# risk_reward_ratio = average win / average loss
|
|
df["risk_reward_ratio"] = df["average_win"] / df["average_loss"]
|
|
|
|
# required_risk_reward = (1 / winrate) - 1
|
|
df["required_risk_reward"] = (1 / df["winrate"]) - 1
|
|
|
|
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
|
|
df["expectancy"] = (df["risk_reward_ratio"] * df["winrate"]) - (1 - df["winrate"])
|
|
|
|
# sort by expectancy and stoploss
|
|
df = (
|
|
df.sort_values(by=["expectancy", "stoploss"], ascending=False)
|
|
.groupby("pair")
|
|
.first()
|
|
.sort_values(by=["expectancy"], ascending=False)
|
|
.reset_index()
|
|
)
|
|
|
|
final = {}
|
|
for x in df.itertuples():
|
|
final[x.pair] = PairInfo(
|
|
x.stoploss,
|
|
x.winrate,
|
|
x.risk_reward_ratio,
|
|
x.required_risk_reward,
|
|
x.expectancy,
|
|
x.nb_trades,
|
|
x.avg_trade_duration,
|
|
)
|
|
|
|
# Returning a list of pairs in order of "expectancy"
|
|
return final
|
|
|
|
def _find_trades_for_stoploss_range(self, df, pair: str, stoploss_range) -> list:
|
|
buy_column = df["enter_long"].values
|
|
sell_column = df["exit_long"].values
|
|
date_column = df["date"].values
|
|
ohlc_columns = df[["open", "high", "low", "close"]].values
|
|
|
|
result: list = []
|
|
for stoploss in stoploss_range:
|
|
result += self._detect_next_stop_or_sell_point(
|
|
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
|
|
)
|
|
|
|
return result
|
|
|
|
def _detect_next_stop_or_sell_point(
|
|
self, buy_column, sell_column, date_column, ohlc_columns, stoploss, pair: str
|
|
):
|
|
"""
|
|
Iterate through ohlc_columns in order to find the next trade
|
|
Next trade opens from the first buy signal noticed to
|
|
The sell or stoploss signal after it.
|
|
It then cuts OHLC, buy_column, sell_column and date_column.
|
|
Cut from (the exit trade index) + 1.
|
|
|
|
Author: https://github.com/mishaker
|
|
"""
|
|
|
|
result: list = []
|
|
start_point = 0
|
|
|
|
while True:
|
|
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
|
|
|
|
# Return empty if we don't find trade entry (i.e. buy==1) or
|
|
# we find a buy but at the end of array
|
|
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
|
|
break
|
|
else:
|
|
# When a buy signal is seen,
|
|
# trade opens in reality on the next candle
|
|
open_trade_index += 1
|
|
|
|
open_price = ohlc_columns[open_trade_index, 0]
|
|
stop_price = open_price * (stoploss + 1)
|
|
|
|
# Searching for the index where stoploss is hit
|
|
stop_index = utf1st.find_1st(
|
|
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller
|
|
)
|
|
|
|
# If we don't find it then we assume stop_index will be far in future (infinite number)
|
|
if stop_index == -1:
|
|
stop_index = float("inf")
|
|
|
|
# Searching for the index where sell is hit
|
|
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
|
|
|
|
# If we don't find it then we assume sell_index will be far in future (infinite number)
|
|
if sell_index == -1:
|
|
sell_index = float("inf")
|
|
|
|
# Check if we don't find any stop or sell point (in that case trade remains open)
|
|
# It is not interesting for Edge to consider it so we simply ignore the trade
|
|
# And stop iterating there is no more entry
|
|
if stop_index == sell_index == float("inf"):
|
|
break
|
|
|
|
if stop_index <= sell_index:
|
|
exit_index = open_trade_index + stop_index
|
|
exit_type = ExitType.STOP_LOSS
|
|
exit_price = stop_price
|
|
elif stop_index > sell_index:
|
|
# If exit is SELL then we exit at the next candle
|
|
exit_index = open_trade_index + sell_index + 1
|
|
|
|
# Check if we have the next candle
|
|
if len(ohlc_columns) - 1 < exit_index:
|
|
break
|
|
|
|
exit_type = ExitType.EXIT_SIGNAL
|
|
exit_price = ohlc_columns[exit_index, 0]
|
|
|
|
trade = {
|
|
"pair": pair,
|
|
"stoploss": stoploss,
|
|
"profit_ratio": "",
|
|
"profit_abs": "",
|
|
"open_date": date_column[open_trade_index],
|
|
"close_date": date_column[exit_index],
|
|
"trade_duration": "",
|
|
"open_rate": round(open_price, 15),
|
|
"close_rate": round(exit_price, 15),
|
|
"exit_type": exit_type,
|
|
}
|
|
|
|
result.append(trade)
|
|
|
|
# Giving a view of exit_index till the end of array
|
|
buy_column = buy_column[exit_index:]
|
|
sell_column = sell_column[exit_index:]
|
|
date_column = date_column[exit_index:]
|
|
ohlc_columns = ohlc_columns[exit_index:]
|
|
start_point += exit_index
|
|
|
|
return result
|