mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 04:03:55 +00:00
596 lines
22 KiB
Python
596 lines
22 KiB
Python
import re
|
|
from datetime import timedelta
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
|
|
import joblib
|
|
import pandas as pd
|
|
import pytest
|
|
|
|
from freqtrade.configuration import TimeRange
|
|
from freqtrade.constants import BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
|
|
from freqtrade.data import history
|
|
from freqtrade.data.btanalysis import (
|
|
get_latest_backtest_filename,
|
|
load_backtest_data,
|
|
load_backtest_stats,
|
|
)
|
|
from freqtrade.edge import PairInfo
|
|
from freqtrade.enums import ExitType
|
|
from freqtrade.optimize.optimize_reports import (
|
|
generate_backtest_stats,
|
|
generate_daily_stats,
|
|
generate_edge_table,
|
|
generate_pair_metrics,
|
|
generate_periodic_breakdown_stats,
|
|
generate_strategy_comparison,
|
|
generate_trading_stats,
|
|
show_sorted_pairlist,
|
|
store_backtest_analysis_results,
|
|
store_backtest_stats,
|
|
text_table_bt_results,
|
|
text_table_strategy,
|
|
)
|
|
from freqtrade.optimize.optimize_reports.bt_output import text_table_tags
|
|
from freqtrade.optimize.optimize_reports.optimize_reports import (
|
|
_get_resample_from_period,
|
|
calc_streak,
|
|
generate_tag_metrics,
|
|
)
|
|
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
|
from freqtrade.util import dt_ts
|
|
from freqtrade.util.datetime_helpers import dt_from_ts, dt_utc
|
|
from tests.conftest import CURRENT_TEST_STRATEGY
|
|
from tests.data.test_history import _clean_test_file
|
|
|
|
|
|
def _backup_file(file: Path, copy_file: bool = False) -> None:
|
|
"""
|
|
Backup existing file to avoid deleting the user file
|
|
:param file: complete path to the file
|
|
:param copy_file: keep file in place too.
|
|
:return: None
|
|
"""
|
|
file_swp = str(file) + ".swp"
|
|
if file.is_file():
|
|
file.rename(file_swp)
|
|
|
|
if copy_file:
|
|
copyfile(file_swp, file)
|
|
|
|
|
|
def test_text_table_bt_results(capsys):
|
|
results = pd.DataFrame(
|
|
{
|
|
"pair": ["ETH/BTC", "ETH/BTC", "ETH/BTC"],
|
|
"profit_ratio": [0.1, 0.2, -0.05],
|
|
"profit_abs": [0.2, 0.4, -0.1],
|
|
"trade_duration": [10, 30, 20],
|
|
}
|
|
)
|
|
|
|
pair_results = generate_pair_metrics(
|
|
["ETH/BTC"], stake_currency="BTC", starting_balance=4, results=results
|
|
)
|
|
text_table_bt_results(pair_results, stake_currency="BTC", title="title")
|
|
text = capsys.readouterr().out
|
|
re.search(
|
|
r".* Pair .* Trades .* Avg Profit % .* Tot Profit BTC .* Tot Profit % .* "
|
|
r"Avg Duration .* Win Draw Loss Win% .*",
|
|
text,
|
|
)
|
|
re.search(
|
|
r".* ETH/BTC .* 3 .* 8.33 .* 0.50000000 .* 12.50 .* 0:20:00 .* 2 0 1 66.7 .*",
|
|
text,
|
|
)
|
|
re.search(
|
|
r".* TOTAL .* 3 .* 8.33 .* 0.50000000 .* 12.50 .* 0:20:00 .* 2 0 1 66.7 .*", text
|
|
)
|
|
|
|
|
|
def test_generate_backtest_stats(default_conf, testdatadir, tmp_path):
|
|
default_conf.update({"strategy": CURRENT_TEST_STRATEGY})
|
|
StrategyResolver.load_strategy(default_conf)
|
|
|
|
results = {
|
|
"DefStrat": {
|
|
"results": pd.DataFrame(
|
|
{
|
|
"pair": ["UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC"],
|
|
"profit_ratio": [0.003312, 0.010801, 0.013803, 0.002780],
|
|
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
|
|
"open_date": [
|
|
dt_utc(2017, 11, 14, 19, 32, 00),
|
|
dt_utc(2017, 11, 14, 21, 36, 00),
|
|
dt_utc(2017, 11, 14, 22, 12, 00),
|
|
dt_utc(2017, 11, 14, 22, 44, 00),
|
|
],
|
|
"close_date": [
|
|
dt_utc(2017, 11, 14, 21, 35, 00),
|
|
dt_utc(2017, 11, 14, 22, 10, 00),
|
|
dt_utc(2017, 11, 14, 22, 43, 00),
|
|
dt_utc(2017, 11, 14, 22, 58, 00),
|
|
],
|
|
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
|
|
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
|
|
"trade_duration": [123, 34, 31, 14],
|
|
"is_open": [False, False, False, True],
|
|
"is_short": [False, False, False, False],
|
|
"stake_amount": [0.01, 0.01, 0.01, 0.01],
|
|
"exit_reason": [
|
|
ExitType.ROI.value,
|
|
ExitType.STOP_LOSS.value,
|
|
ExitType.ROI.value,
|
|
ExitType.FORCE_EXIT.value,
|
|
],
|
|
}
|
|
),
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"final_balance": 1000.02,
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"backtest_start_time": dt_ts() // 1000,
|
|
"backtest_end_time": dt_ts() // 1000,
|
|
"run_id": "123",
|
|
}
|
|
}
|
|
timerange = TimeRange.parse_timerange("1510688220-1510700340")
|
|
min_date = dt_from_ts(1510688220)
|
|
max_date = dt_from_ts(1510700340)
|
|
btdata = history.load_data(
|
|
testdatadir, "1m", ["UNITTEST/BTC"], timerange=timerange, fill_up_missing=True
|
|
)
|
|
|
|
stats = generate_backtest_stats(btdata, results, min_date, max_date)
|
|
assert isinstance(stats, dict)
|
|
assert "strategy" in stats
|
|
assert "DefStrat" in stats["strategy"]
|
|
assert "strategy_comparison" in stats
|
|
strat_stats = stats["strategy"]["DefStrat"]
|
|
assert strat_stats["backtest_start"] == min_date.strftime(DATETIME_PRINT_FORMAT)
|
|
assert strat_stats["backtest_end"] == max_date.strftime(DATETIME_PRINT_FORMAT)
|
|
assert strat_stats["total_trades"] == len(results["DefStrat"]["results"])
|
|
# Above sample had no losing trade
|
|
assert strat_stats["max_drawdown_account"] == 0.0
|
|
|
|
# Retry with losing trade
|
|
results = {
|
|
"DefStrat": {
|
|
"results": pd.DataFrame(
|
|
{
|
|
"pair": ["UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC"],
|
|
"profit_ratio": [0.003312, 0.010801, -0.013803, 0.002780],
|
|
"profit_abs": [0.000003, 0.000011, -0.000014, 0.000003],
|
|
"open_date": [
|
|
dt_utc(2017, 11, 14, 19, 32, 00),
|
|
dt_utc(2017, 11, 14, 21, 36, 00),
|
|
dt_utc(2017, 11, 14, 22, 12, 00),
|
|
dt_utc(2017, 11, 14, 22, 44, 00),
|
|
],
|
|
"close_date": [
|
|
dt_utc(2017, 11, 14, 21, 35, 00),
|
|
dt_utc(2017, 11, 14, 22, 10, 00),
|
|
dt_utc(2017, 11, 14, 22, 43, 00),
|
|
dt_utc(2017, 11, 14, 22, 58, 00),
|
|
],
|
|
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
|
|
"close_rate": [0.002546, 0.003014, 0.0032903, 0.003217],
|
|
"trade_duration": [123, 34, 31, 14],
|
|
"is_open": [False, False, False, True],
|
|
"is_short": [False, False, False, False],
|
|
"stake_amount": [0.01, 0.01, 0.01, 0.01],
|
|
"exit_reason": [
|
|
ExitType.ROI.value,
|
|
ExitType.ROI.value,
|
|
ExitType.STOP_LOSS.value,
|
|
ExitType.FORCE_EXIT.value,
|
|
],
|
|
}
|
|
),
|
|
"config": default_conf,
|
|
"locks": [],
|
|
"final_balance": 1000.02,
|
|
"rejected_signals": 20,
|
|
"timedout_entry_orders": 0,
|
|
"timedout_exit_orders": 0,
|
|
"canceled_trade_entries": 0,
|
|
"canceled_entry_orders": 0,
|
|
"replaced_entry_orders": 0,
|
|
"backtest_start_time": dt_ts() // 1000,
|
|
"backtest_end_time": dt_ts() // 1000,
|
|
"run_id": "124",
|
|
}
|
|
}
|
|
|
|
stats = generate_backtest_stats(btdata, results, min_date, max_date)
|
|
assert isinstance(stats, dict)
|
|
assert "strategy" in stats
|
|
assert "DefStrat" in stats["strategy"]
|
|
assert "strategy_comparison" in stats
|
|
strat_stats = stats["strategy"]["DefStrat"]
|
|
|
|
assert pytest.approx(strat_stats["max_drawdown_account"]) == 1.399999e-08
|
|
assert strat_stats["drawdown_start"] == "2017-11-14 22:10:00"
|
|
assert strat_stats["drawdown_end"] == "2017-11-14 22:43:00"
|
|
assert strat_stats["drawdown_end_ts"] == 1510699380000
|
|
assert strat_stats["drawdown_start_ts"] == 1510697400000
|
|
assert strat_stats["pairlist"] == ["UNITTEST/BTC"]
|
|
|
|
# Test storing stats
|
|
filename = tmp_path / "btresult.json"
|
|
filename_last = tmp_path / LAST_BT_RESULT_FN
|
|
_backup_file(filename_last, copy_file=True)
|
|
assert not filename.is_file()
|
|
|
|
store_backtest_stats(filename, stats, "2022_01_01_15_05_13")
|
|
|
|
# get real Filename (it's btresult-<date>.json)
|
|
last_fn = get_latest_backtest_filename(filename_last.parent)
|
|
assert re.match(r"btresult-.*\.json", last_fn)
|
|
|
|
filename1 = tmp_path / last_fn
|
|
assert filename1.is_file()
|
|
content = filename1.read_text()
|
|
assert "max_drawdown_account" in content
|
|
assert "strategy" in content
|
|
assert "pairlist" in content
|
|
|
|
assert filename_last.is_file()
|
|
|
|
_clean_test_file(filename_last)
|
|
filename1.unlink()
|
|
|
|
|
|
def test_store_backtest_stats(testdatadir, mocker):
|
|
dump_mock = mocker.patch("freqtrade.optimize.optimize_reports.bt_storage.file_dump_json")
|
|
|
|
data = {"metadata": {}, "strategy": {}, "strategy_comparison": []}
|
|
store_backtest_stats(testdatadir, data, "2022_01_01_15_05_13")
|
|
|
|
assert dump_mock.call_count == 3
|
|
assert isinstance(dump_mock.call_args_list[0][0][0], Path)
|
|
assert str(dump_mock.call_args_list[0][0][0]).startswith(str(testdatadir / "backtest-result"))
|
|
|
|
dump_mock.reset_mock()
|
|
filename = testdatadir / "testresult.json"
|
|
store_backtest_stats(filename, data, "2022_01_01_15_05_13")
|
|
assert dump_mock.call_count == 3
|
|
assert isinstance(dump_mock.call_args_list[0][0][0], Path)
|
|
# result will be testdatadir / testresult-<timestamp>.json
|
|
assert str(dump_mock.call_args_list[0][0][0]).startswith(str(testdatadir / "testresult"))
|
|
|
|
|
|
def test_store_backtest_stats_real(tmp_path):
|
|
data = {"metadata": {}, "strategy": {}, "strategy_comparison": []}
|
|
store_backtest_stats(tmp_path, data, "2022_01_01_15_05_13")
|
|
|
|
assert (tmp_path / "backtest-result-2022_01_01_15_05_13.json").is_file()
|
|
assert (tmp_path / "backtest-result-2022_01_01_15_05_13.meta.json").is_file()
|
|
assert not (tmp_path / "backtest-result-2022_01_01_15_05_13_market_change.feather").is_file()
|
|
assert (tmp_path / LAST_BT_RESULT_FN).is_file()
|
|
fn = get_latest_backtest_filename(tmp_path)
|
|
assert fn == "backtest-result-2022_01_01_15_05_13.json"
|
|
|
|
store_backtest_stats(tmp_path, data, "2024_01_01_15_05_25", market_change_data=pd.DataFrame())
|
|
assert (tmp_path / "backtest-result-2024_01_01_15_05_25.json").is_file()
|
|
assert (tmp_path / "backtest-result-2024_01_01_15_05_25.meta.json").is_file()
|
|
assert (tmp_path / "backtest-result-2024_01_01_15_05_25_market_change.feather").is_file()
|
|
assert (tmp_path / LAST_BT_RESULT_FN).is_file()
|
|
|
|
# Last file reference should be updated
|
|
fn = get_latest_backtest_filename(tmp_path)
|
|
assert fn == "backtest-result-2024_01_01_15_05_25.json"
|
|
|
|
|
|
def test_store_backtest_candles(testdatadir, mocker):
|
|
dump_mock = mocker.patch("freqtrade.optimize.optimize_reports.bt_storage.file_dump_joblib")
|
|
|
|
candle_dict = {"DefStrat": {"UNITTEST/BTC": pd.DataFrame()}}
|
|
|
|
# mock directory exporting
|
|
store_backtest_analysis_results(testdatadir, candle_dict, {}, {}, "2022_01_01_15_05_13")
|
|
|
|
assert dump_mock.call_count == 3
|
|
assert isinstance(dump_mock.call_args_list[0][0][0], Path)
|
|
assert str(dump_mock.call_args_list[0][0][0]).endswith("_signals.pkl")
|
|
assert str(dump_mock.call_args_list[1][0][0]).endswith("_rejected.pkl")
|
|
assert str(dump_mock.call_args_list[2][0][0]).endswith("_exited.pkl")
|
|
|
|
dump_mock.reset_mock()
|
|
# mock file exporting
|
|
filename = Path(testdatadir / "testresult")
|
|
store_backtest_analysis_results(filename, candle_dict, {}, {}, "2022_01_01_15_05_13")
|
|
assert dump_mock.call_count == 3
|
|
assert isinstance(dump_mock.call_args_list[0][0][0], Path)
|
|
# result will be testdatadir / testresult-<timestamp>_signals.pkl
|
|
assert str(dump_mock.call_args_list[0][0][0]).endswith("_signals.pkl")
|
|
assert str(dump_mock.call_args_list[1][0][0]).endswith("_rejected.pkl")
|
|
assert str(dump_mock.call_args_list[2][0][0]).endswith("_exited.pkl")
|
|
|
|
dump_mock.reset_mock()
|
|
|
|
|
|
def test_write_read_backtest_candles(tmp_path):
|
|
candle_dict = {"DefStrat": {"UNITTEST/BTC": pd.DataFrame()}}
|
|
|
|
# test directory exporting
|
|
sample_date = "2022_01_01_15_05_13"
|
|
store_backtest_analysis_results(tmp_path, candle_dict, {}, {}, sample_date)
|
|
stored_file = tmp_path / f"backtest-result-{sample_date}_signals.pkl"
|
|
with stored_file.open("rb") as scp:
|
|
pickled_signal_candles = joblib.load(scp)
|
|
|
|
assert pickled_signal_candles.keys() == candle_dict.keys()
|
|
assert pickled_signal_candles["DefStrat"].keys() == pickled_signal_candles["DefStrat"].keys()
|
|
assert pickled_signal_candles["DefStrat"]["UNITTEST/BTC"].equals(
|
|
pickled_signal_candles["DefStrat"]["UNITTEST/BTC"]
|
|
)
|
|
|
|
_clean_test_file(stored_file)
|
|
|
|
# test file exporting
|
|
filename = tmp_path / "testresult"
|
|
store_backtest_analysis_results(filename, candle_dict, {}, {}, sample_date)
|
|
stored_file = tmp_path / f"testresult-{sample_date}_signals.pkl"
|
|
with stored_file.open("rb") as scp:
|
|
pickled_signal_candles = joblib.load(scp)
|
|
|
|
assert pickled_signal_candles.keys() == candle_dict.keys()
|
|
assert pickled_signal_candles["DefStrat"].keys() == pickled_signal_candles["DefStrat"].keys()
|
|
assert pickled_signal_candles["DefStrat"]["UNITTEST/BTC"].equals(
|
|
pickled_signal_candles["DefStrat"]["UNITTEST/BTC"]
|
|
)
|
|
|
|
_clean_test_file(stored_file)
|
|
|
|
|
|
def test_generate_pair_metrics():
|
|
results = pd.DataFrame(
|
|
{
|
|
"pair": ["ETH/BTC", "ETH/BTC"],
|
|
"profit_ratio": [0.1, 0.2],
|
|
"profit_abs": [0.2, 0.4],
|
|
"trade_duration": [10, 30],
|
|
"wins": [2, 0],
|
|
"draws": [0, 0],
|
|
"losses": [0, 0],
|
|
}
|
|
)
|
|
|
|
pair_results = generate_pair_metrics(
|
|
["ETH/BTC"], stake_currency="BTC", starting_balance=2, results=results
|
|
)
|
|
assert isinstance(pair_results, list)
|
|
assert len(pair_results) == 2
|
|
assert pair_results[-1]["key"] == "TOTAL"
|
|
assert (
|
|
pytest.approx(pair_results[-1]["profit_mean_pct"]) == pair_results[-1]["profit_mean"] * 100
|
|
)
|
|
assert pytest.approx(pair_results[-1]["profit_sum_pct"]) == pair_results[-1]["profit_sum"] * 100
|
|
|
|
|
|
def test_generate_daily_stats(testdatadir):
|
|
filename = testdatadir / "backtest_results/backtest-result.json"
|
|
bt_data = load_backtest_data(filename)
|
|
res = generate_daily_stats(bt_data)
|
|
assert isinstance(res, dict)
|
|
assert round(res["backtest_best_day"], 4) == 0.1796
|
|
assert round(res["backtest_worst_day"], 4) == -0.1468
|
|
assert res["winning_days"] == 19
|
|
assert res["draw_days"] == 0
|
|
assert res["losing_days"] == 2
|
|
|
|
# Select empty dataframe!
|
|
res = generate_daily_stats(bt_data.loc[bt_data["open_date"] == "2000-01-01", :])
|
|
assert isinstance(res, dict)
|
|
assert round(res["backtest_best_day"], 4) == 0.0
|
|
assert res["winning_days"] == 0
|
|
assert res["draw_days"] == 0
|
|
assert res["losing_days"] == 0
|
|
|
|
|
|
def test_generate_trading_stats(testdatadir):
|
|
filename = testdatadir / "backtest_results/backtest-result.json"
|
|
bt_data = load_backtest_data(filename)
|
|
res = generate_trading_stats(bt_data)
|
|
assert isinstance(res, dict)
|
|
assert res["winner_holding_avg"] == timedelta(seconds=1440)
|
|
assert res["loser_holding_avg"] == timedelta(days=1, seconds=21420)
|
|
assert "wins" in res
|
|
assert "losses" in res
|
|
assert "draws" in res
|
|
|
|
# Select empty dataframe!
|
|
res = generate_trading_stats(bt_data.loc[bt_data["open_date"] == "2000-01-01", :])
|
|
assert res["wins"] == 0
|
|
assert res["losses"] == 0
|
|
|
|
|
|
def test_calc_streak(testdatadir):
|
|
df = pd.DataFrame(
|
|
{
|
|
"profit_ratio": [0.05, -0.02, -0.03, -0.05, 0.01, 0.02, 0.03, 0.04, -0.02, -0.03],
|
|
}
|
|
)
|
|
# 4 consecutive wins, 3 consecutive losses
|
|
res = calc_streak(df)
|
|
assert res == (4, 3)
|
|
assert isinstance(res[0], int)
|
|
assert isinstance(res[1], int)
|
|
|
|
# invert situation
|
|
df1 = df.copy()
|
|
df1["profit_ratio"] = df1["profit_ratio"] * -1
|
|
assert calc_streak(df1) == (3, 4)
|
|
|
|
df_empty = pd.DataFrame(
|
|
{
|
|
"profit_ratio": [],
|
|
}
|
|
)
|
|
assert df_empty.empty
|
|
assert calc_streak(df_empty) == (0, 0)
|
|
|
|
filename = testdatadir / "backtest_results/backtest-result.json"
|
|
bt_data = load_backtest_data(filename)
|
|
assert calc_streak(bt_data) == (7, 18)
|
|
|
|
|
|
def test_text_table_exit_reason(capsys):
|
|
results = pd.DataFrame(
|
|
{
|
|
"pair": ["ETH/BTC", "ETH/BTC", "ETH/BTC"],
|
|
"profit_ratio": [0.1, 0.2, -0.1],
|
|
"profit_abs": [0.2, 0.4, -0.2],
|
|
"trade_duration": [10, 30, 10],
|
|
"wins": [2, 0, 0],
|
|
"draws": [0, 0, 0],
|
|
"losses": [0, 0, 1],
|
|
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value, ExitType.STOP_LOSS.value],
|
|
}
|
|
)
|
|
|
|
exit_reason_stats = generate_tag_metrics(
|
|
"exit_reason", starting_balance=22, results=results, skip_nan=False
|
|
)
|
|
text_table_tags("exit_tag", exit_reason_stats, "BTC")
|
|
text = capsys.readouterr().out
|
|
|
|
assert re.search(
|
|
r".* Exit Reason .* Exits .* Avg Profit % .* Tot Profit BTC .* Tot Profit % .* "
|
|
r"Avg Duration .* Win Draw Loss Win% .*",
|
|
text,
|
|
)
|
|
assert re.search(
|
|
r".* roi .* 2 .* 15.0 .* 0.60000000 .* 2.73 .* 0:20:00 .* 2 0 0 100 .*",
|
|
text,
|
|
)
|
|
assert re.search(
|
|
r".* stop_loss .* 1 .* -10.0 .* -0.20000000 .* -0.91 .* 0:10:00 .* 0 0 1 0 .*",
|
|
text,
|
|
)
|
|
assert re.search(
|
|
r".* TOTAL .* 3 .* 6.67 .* 0.40000000 .* 1.82 .* 0:17:00 .* 2 0 1 66.7 .*", text
|
|
)
|
|
|
|
|
|
def test_generate_sell_reason_stats():
|
|
results = pd.DataFrame(
|
|
{
|
|
"pair": ["ETH/BTC", "ETH/BTC", "ETH/BTC"],
|
|
"profit_ratio": [0.1, 0.2, -0.1],
|
|
"profit_abs": [0.2, 0.4, -0.2],
|
|
"trade_duration": [10, 30, 10],
|
|
"wins": [2, 0, 0],
|
|
"draws": [0, 0, 0],
|
|
"losses": [0, 0, 1],
|
|
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value, ExitType.STOP_LOSS.value],
|
|
}
|
|
)
|
|
|
|
exit_reason_stats = generate_tag_metrics(
|
|
"exit_reason", starting_balance=22, results=results, skip_nan=False
|
|
)
|
|
roi_result = exit_reason_stats[0]
|
|
assert roi_result["key"] == "roi"
|
|
assert roi_result["trades"] == 2
|
|
assert pytest.approx(roi_result["profit_mean"]) == 0.15
|
|
assert roi_result["profit_mean_pct"] == round(roi_result["profit_mean"] * 100, 2)
|
|
assert pytest.approx(roi_result["profit_mean"]) == 0.15
|
|
assert roi_result["profit_mean_pct"] == round(roi_result["profit_mean"] * 100, 2)
|
|
|
|
stop_result = exit_reason_stats[1]
|
|
|
|
assert stop_result["key"] == "stop_loss"
|
|
assert stop_result["trades"] == 1
|
|
assert pytest.approx(stop_result["profit_mean"]) == -0.1
|
|
assert stop_result["profit_mean_pct"] == round(stop_result["profit_mean"] * 100, 2)
|
|
assert pytest.approx(stop_result["profit_mean"]) == -0.1
|
|
assert stop_result["profit_mean_pct"] == round(stop_result["profit_mean"] * 100, 2)
|
|
|
|
|
|
def test_text_table_strategy(testdatadir, capsys):
|
|
filename = testdatadir / "backtest_results/backtest-result_multistrat.json"
|
|
bt_res_data = load_backtest_stats(filename)
|
|
|
|
bt_res_data_comparison = bt_res_data.pop("strategy_comparison")
|
|
|
|
strategy_results = generate_strategy_comparison(bt_stats=bt_res_data["strategy"])
|
|
assert strategy_results == bt_res_data_comparison
|
|
text_table_strategy(strategy_results, "BTC", "STRATEGY SUMMARY")
|
|
|
|
captured = capsys.readouterr()
|
|
text = captured.out
|
|
assert re.search(
|
|
r".* Strategy .* Trades .* Avg Profit % .* Tot Profit BTC .* Tot Profit % .* "
|
|
r"Avg Duration .* Win Draw Loss Win% .* Drawdown .*",
|
|
text,
|
|
)
|
|
assert re.search(
|
|
r".*StrategyTestV2 .* 179 .* 0.08 .* 0.02608550 .* "
|
|
r"260.85 .* 3:40:00 .* 170 0 9 95.0 .* 0.00308222 BTC 8.67%.*",
|
|
text,
|
|
)
|
|
assert re.search(
|
|
r".*TestStrategy .* 179 .* 0.08 .* 0.02608550 .* "
|
|
r"260.85 .* 3:40:00 .* 170 0 9 95.0 .* 0.00308222 BTC 8.67%.*",
|
|
text,
|
|
)
|
|
|
|
|
|
def test_generate_edge_table(capsys):
|
|
results = {}
|
|
results["ETH/BTC"] = PairInfo(-0.01, 0.60, 2, 1, 3, 10, 60)
|
|
generate_edge_table(results)
|
|
text = capsys.readouterr().out
|
|
assert re.search(r".* ETH/BTC .*", text)
|
|
assert re.search(r".* Risk Reward Ratio .* Required Risk Reward .* Expectancy .*", text)
|
|
|
|
|
|
def test_generate_periodic_breakdown_stats(testdatadir):
|
|
filename = testdatadir / "backtest_results/backtest-result.json"
|
|
bt_data = load_backtest_data(filename).to_dict(orient="records")
|
|
|
|
res = generate_periodic_breakdown_stats(bt_data, "day")
|
|
assert isinstance(res, list)
|
|
assert len(res) == 21
|
|
day = res[0]
|
|
assert "date" in day
|
|
assert "draws" in day
|
|
assert "loses" in day
|
|
assert "wins" in day
|
|
assert "profit_abs" in day
|
|
|
|
# Select empty dataframe!
|
|
res = generate_periodic_breakdown_stats([], "day")
|
|
assert res == []
|
|
|
|
|
|
def test__get_resample_from_period():
|
|
assert _get_resample_from_period("day") == "1d"
|
|
assert _get_resample_from_period("week") == "1W-MON"
|
|
assert _get_resample_from_period("month") == "1ME"
|
|
with pytest.raises(ValueError, match=r"Period noooo is not supported."):
|
|
_get_resample_from_period("noooo")
|
|
|
|
for period in BACKTEST_BREAKDOWNS:
|
|
assert isinstance(_get_resample_from_period(period), str)
|
|
|
|
|
|
def test_show_sorted_pairlist(testdatadir, default_conf, capsys):
|
|
filename = testdatadir / "backtest_results/backtest-result.json"
|
|
bt_data = load_backtest_stats(filename)
|
|
default_conf["backtest_show_pair_list"] = True
|
|
|
|
show_sorted_pairlist(default_conf, bt_data)
|
|
|
|
out, _err = capsys.readouterr()
|
|
assert "Pairs for Strategy StrategyTestV3: \n[" in out
|
|
assert "TOTAL" not in out
|
|
assert '"ETH/BTC", // ' in out
|