freqtrade_origin/freqtrade/strategy/interface.py
2018-07-19 19:29:31 +02:00

252 lines
9.3 KiB
Python

"""
IStrategy interface
This module defines the interface to apply for strategies
"""
import logging
from abc import ABC, abstractmethod
from datetime import datetime
from enum import Enum
from typing import Dict, List, Tuple
import arrow
from pandas import DataFrame
from freqtrade import constants
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
from freqtrade.exchange import Exchange
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
class SignalType(Enum):
"""
Enum to distinguish between buy and sell signals
"""
BUY = "buy"
SELL = "sell"
class SellType(Enum):
"""
Enum to distinguish between sell reasons
"""
ROI = "roi"
STOP_LOSS = "stop_loss"
TRAILING_STOP_LOSS = "trailing_stop_loss"
SELL_SIGNAL = "sell_signal"
FORCE_SELL = "force_sell"
NONE = ""
class IStrategy(ABC):
"""
Interface for freqtrade strategies
Defines the mandatory structure must follow any custom strategies
Attributes you can use:
minimal_roi -> Dict: Minimal ROI designed for the strategy
stoploss -> float: optimal stoploss designed for the strategy
ticker_interval -> str: value of the ticker interval to use for the strategy
"""
minimal_roi: Dict
stoploss: float
ticker_interval: str
def __init__(self, config: dict) -> None:
self.config = config
@abstractmethod
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:return: a Dataframe with all mandatory indicators for the strategies
"""
@abstractmethod
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
@abstractmethod
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with sell column
"""
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
"""
dataframe = parse_ticker_dataframe(ticker_history)
dataframe = self.populate_indicators(dataframe)
dataframe = self.populate_buy_trend(dataframe)
dataframe = self.populate_sell_trend(dataframe)
return dataframe
def get_signal(self, exchange: Exchange, pair: str, interval: str) -> Tuple[bool, bool]:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format ANT/BTC
:param interval: Interval to use (in min)
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
"""
ticker_hist = exchange.get_ticker_history(pair, interval)
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return False, False
try:
dataframe = self.analyze_ticker(ticker_hist)
except ValueError as error:
logger.warning(
'Unable to analyze ticker for pair %s: %s',
pair,
str(error)
)
return False, False
except Exception as error:
logger.exception(
'Unexpected error when analyzing ticker for pair %s: %s',
pair,
str(error)
)
return False, False
if dataframe.empty:
logger.warning('Empty dataframe for pair %s', pair)
return False, False
latest = dataframe.iloc[-1]
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair,
(arrow.utcnow() - signal_date).seconds // 60
)
return False, False
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
logger.debug(
'trigger: %s (pair=%s) buy=%s sell=%s',
latest['date'],
pair,
str(buy),
str(sell)
)
return buy, sell
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
sell: bool) -> Tuple[bool, SellType]:
"""
This function evaluate if on the condition required to trigger a sell has been reached
if the threshold is reached and updates the trade record.
:return: True if trade should be sold, False otherwise
"""
current_profit = trade.calc_profit_percent(rate)
stoplossflag = self.stop_loss_reached(current_rate=rate, trade=trade, current_time=date,
current_profit=current_profit)
if stoplossflag[0]:
return (True, stoplossflag[1])
experimental = self.config.get('experimental', {})
if buy and experimental.get('ignore_roi_if_buy_signal', False):
logger.debug('Buy signal still active - not selling.')
return (False, SellType.NONE)
# Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee)
if self.min_roi_reached(trade=trade, current_profit=current_profit, current_time=date):
logger.debug('Required profit reached. Selling..')
return (True, SellType.ROI)
if experimental.get('sell_profit_only', False):
logger.debug('Checking if trade is profitable..')
if trade.calc_profit(rate=rate) <= 0:
return (False, SellType.NONE)
if sell and not buy and experimental.get('use_sell_signal', False):
logger.debug('Sell signal received. Selling..')
return (True, SellType.SELL_SIGNAL)
return (False, SellType.NONE)
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime,
current_profit: float) -> Tuple[bool, SellType]:
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to sell or not
"""
trailing_stop = self.config.get('trailing_stop', False)
trade.adjust_stop_loss(trade.open_rate, self.stoploss, initial=True)
# evaluate if the stoploss was hit
if self.stoploss is not None and trade.stop_loss >= current_rate:
selltype = SellType.STOP_LOSS
if trailing_stop:
selltype = SellType.TRAILING_STOP_LOSS
logger.debug(
f"HIT STOP: current price at {current_rate:.6f}, "
f"stop loss is {trade.stop_loss:.6f}, "
f"initial stop loss was at {trade.initial_stop_loss:.6f}, "
f"trade opened at {trade.open_rate:.6f}")
logger.debug(f"trailing stop saved {trade.stop_loss - trade.initial_stop_loss:.6f}")
logger.debug('Stop loss hit.')
return (True, selltype)
# update the stop loss afterwards, after all by definition it's supposed to be hanging
if trailing_stop:
# check if we have a special stop loss for positive condition
# and if profit is positive
stop_loss_value = self.stoploss
if 'trailing_stop_positive' in self.config and current_profit > 0:
# Ignore mypy error check in configuration that this is a float
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
logger.debug(f"using positive stop loss mode: {stop_loss_value} "
f"since we have profit {current_profit}")
trade.adjust_stop_loss(current_rate, stop_loss_value)
return (False, SellType.NONE)
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
"""
Based an earlier trade and current price and ROI configuration, decides whether bot should
sell
:return True if bot should sell at current rate
"""
# Check if time matches and current rate is above threshold
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
for duration, threshold in self.minimal_roi.items():
if time_diff <= duration:
return False
if current_profit > threshold:
return True
return False
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
"""
Creates a dataframe and populates indicators for given ticker data
"""
return {pair: self.populate_indicators(parse_ticker_dataframe(pair_data))
for pair, pair_data in tickerdata.items()}