freqtrade_origin/freqtrade/data/metrics.py
2024-05-13 07:10:25 +02:00

367 lines
14 KiB
Python

import logging
import math
from datetime import datetime
from typing import Dict, Tuple
import numpy as np
import pandas as pd
logger = logging.getLogger(__name__)
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
"""
Calculate market change based on "column".
Calculation is done by taking the first non-null and the last non-null element of each column
and calculating the pctchange as "(last - first) / first".
Then the results per pair are combined as mean.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return:
"""
tmp_means = []
for pair, df in data.items():
start = df[column].dropna().iloc[0]
end = df[column].dropna().iloc[-1]
tmp_means.append((end - start) / start)
return float(np.mean(tmp_means))
def combine_dataframes_by_column(
data: Dict[str, pd.DataFrame], column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key.
:raise: ValueError if no data is provided.
"""
if not data:
raise ValueError("No data provided.")
df_comb = pd.concat(
[data[pair].set_index("date").rename({column: pair}, axis=1)[pair] for pair in data], axis=1
)
return df_comb
def combined_dataframes_with_rel_mean(
data: Dict[str, pd.DataFrame], fromdt: datetime, todt: datetime, column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = combine_dataframes_by_column(data, column)
# Trim dataframes to the given timeframe
df_comb = df_comb.iloc[(df_comb.index >= fromdt) & (df_comb.index < todt)]
df_comb["count"] = df_comb.count(axis=1)
df_comb["mean"] = df_comb.mean(axis=1)
df_comb["rel_mean"] = df_comb["mean"].pct_change().fillna(0).cumsum()
return df_comb[["mean", "rel_mean", "count"]]
def combine_dataframes_with_mean(
data: Dict[str, pd.DataFrame], column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = combine_dataframes_by_column(data, column)
df_comb["mean"] = df_comb.mean(axis=1)
return df_comb
def create_cum_profit(
df: pd.DataFrame, trades: pd.DataFrame, col_name: str, timeframe: str
) -> pd.DataFrame:
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
from freqtrade.exchange import timeframe_to_resample_freq
timeframe_freq = timeframe_to_resample_freq(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(timeframe_freq, on="close_date")[["profit_abs"]].sum()
df.loc[:, col_name] = _trades_sum["profit_abs"].cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def _calc_drawdown_series(
profit_results: pd.DataFrame, *, date_col: str, value_col: str, starting_balance: float
) -> pd.DataFrame:
max_drawdown_df = pd.DataFrame()
max_drawdown_df["cumulative"] = profit_results[value_col].cumsum()
max_drawdown_df["high_value"] = max_drawdown_df["cumulative"].cummax()
max_drawdown_df["drawdown"] = max_drawdown_df["cumulative"] - max_drawdown_df["high_value"]
max_drawdown_df["date"] = profit_results.loc[:, date_col]
if starting_balance:
cumulative_balance = starting_balance + max_drawdown_df["cumulative"]
max_balance = starting_balance + max_drawdown_df["high_value"]
max_drawdown_df["drawdown_relative"] = (max_balance - cumulative_balance) / max_balance
else:
# NOTE: This is not completely accurate,
# but might good enough if starting_balance is not available
max_drawdown_df["drawdown_relative"] = (
max_drawdown_df["high_value"] - max_drawdown_df["cumulative"]
) / max_drawdown_df["high_value"]
return max_drawdown_df
def calculate_underwater(
trades: pd.DataFrame,
*,
date_col: str = "close_date",
value_col: str = "profit_ratio",
starting_balance: float = 0.0,
):
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
high and low time and high and low value.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results, date_col=date_col, value_col=value_col, starting_balance=starting_balance
)
return max_drawdown_df
def calculate_max_drawdown(
trades: pd.DataFrame,
*,
date_col: str = "close_date",
value_col: str = "profit_abs",
starting_balance: float = 0,
relative: bool = False,
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
with absolute max drawdown, high and low time and high and low value,
and the relative account drawdown
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results, date_col=date_col, value_col=value_col, starting_balance=starting_balance
)
idxmin = (
max_drawdown_df["drawdown_relative"].idxmax()
if relative
else max_drawdown_df["drawdown"].idxmin()
)
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]["high_value"].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
high_val = max_drawdown_df.loc[
max_drawdown_df.iloc[:idxmin]["high_value"].idxmax(), "cumulative"
]
low_val = max_drawdown_df.loc[idxmin, "cumulative"]
max_drawdown_rel = max_drawdown_df.loc[idxmin, "drawdown_relative"]
return (
abs(max_drawdown_df.loc[idxmin, "drawdown"]),
high_date,
low_date,
high_val,
low_val,
max_drawdown_rel,
)
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
"""
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param starting_balance: Add starting balance to results, to show the wallets high / low points
:return: Tuple (float, float) with cumsum of profit_abs
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
csum_df = pd.DataFrame()
csum_df["sum"] = trades["profit_abs"].cumsum()
csum_min = csum_df["sum"].min() + starting_balance
csum_max = csum_df["sum"].max() + starting_balance
return csum_min, csum_max
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
"""
Calculate CAGR
:param days_passed: Days passed between start and ending balance
:param starting_balance: Starting balance
:param final_balance: Final balance to calculate CAGR against
:return: CAGR
"""
if final_balance < 0:
# With leveraged trades, final_balance can become negative.
return 0
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
def calculate_expectancy(trades: pd.DataFrame) -> Tuple[float, float]:
"""
Calculate expectancy
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:return: expectancy, expectancy_ratio
"""
expectancy = 0
expectancy_ratio = 100
if len(trades) > 0:
winning_trades = trades.loc[trades["profit_abs"] > 0]
losing_trades = trades.loc[trades["profit_abs"] < 0]
profit_sum = winning_trades["profit_abs"].sum()
loss_sum = abs(losing_trades["profit_abs"].sum())
nb_win_trades = len(winning_trades)
nb_loss_trades = len(losing_trades)
average_win = (profit_sum / nb_win_trades) if nb_win_trades > 0 else 0
average_loss = (loss_sum / nb_loss_trades) if nb_loss_trades > 0 else 0
winrate = nb_win_trades / len(trades)
loserate = nb_loss_trades / len(trades)
expectancy = (winrate * average_win) - (loserate * average_loss)
if average_loss > 0:
risk_reward_ratio = average_win / average_loss
expectancy_ratio = ((1 + risk_reward_ratio) * winrate) - 1
return expectancy, expectancy_ratio
def calculate_sortino(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate sortino
:param trades: DataFrame containing trades (requires columns profit_abs)
:return: sortino
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades["profit_abs"] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
down_stdev = np.std(trades.loc[trades["profit_abs"] < 0, "profit_abs"] / starting_balance)
if down_stdev != 0 and not np.isnan(down_stdev):
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -100
# print(expected_returns_mean, down_stdev, sortino_ratio)
return sortino_ratio
def calculate_sharpe(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate sharpe
:param trades: DataFrame containing trades (requires column profit_abs)
:return: sharpe
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades["profit_abs"] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -100
# print(expected_returns_mean, up_stdev, sharp_ratio)
return sharp_ratio
def calculate_calmar(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate calmar
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:return: calmar
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades["profit_abs"].sum() / starting_balance
days_period = max(1, (max_date - min_date).days)
# adding slippage of 0.1% per trade
# total_profit = total_profit - 0.0005
expected_returns_mean = total_profit / days_period * 100
# calculate max drawdown
try:
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
trades, value_col="profit_abs", starting_balance=starting_balance
)
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * math.sqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -100
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return calmar_ratio