mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
65 lines
2.4 KiB
Python
65 lines
2.4 KiB
Python
import logging
|
|
from typing import Any
|
|
|
|
from pandas import DataFrame
|
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BaseTensorFlowModel(IFreqaiModel):
|
|
"""
|
|
Base class for TensorFlow type models.
|
|
User *must* inherit from this class and set fit() and predict().
|
|
"""
|
|
|
|
def train(
|
|
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
|
) -> Any:
|
|
"""
|
|
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
|
for storing, saving, loading, and analyzing the data.
|
|
:param unfiltered_dataframe: Full dataframe for the current training period
|
|
:param metadata: pair metadata from strategy.
|
|
:return:
|
|
:model: Trained model which can be used to inference (self.predict)
|
|
"""
|
|
|
|
logger.info("-------------------- Starting training " f"{pair} --------------------")
|
|
|
|
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
|
features_filtered, labels_filtered = dk.filter_features(
|
|
unfiltered_dataframe,
|
|
dk.training_features_list,
|
|
dk.label_list,
|
|
training_filter=True,
|
|
)
|
|
|
|
start_date = unfiltered_dataframe["date"].iloc[0].strftime("%Y-%m-%d")
|
|
end_date = unfiltered_dataframe["date"].iloc[-1].strftime("%Y-%m-%d")
|
|
logger.info(f"-------------------- Training on data from {start_date} to "
|
|
f"{end_date}--------------------")
|
|
# split data into train/test data.
|
|
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
|
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
|
|
dk.fit_labels()
|
|
# normalize all data based on train_dataset only
|
|
data_dictionary = dk.normalize_data(data_dictionary)
|
|
|
|
# optional additional data cleaning/analysis
|
|
self.data_cleaning_train(dk)
|
|
|
|
logger.info(
|
|
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
|
)
|
|
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
|
|
|
model = self.fit(data_dictionary)
|
|
|
|
logger.info(f"--------------------done training {pair}--------------------")
|
|
|
|
return model
|