mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 20:23:57 +00:00
106 lines
3.1 KiB
Python
106 lines
3.1 KiB
Python
"""
|
|
IHyperOpt interface
|
|
This module defines the interface to apply for hyperopts
|
|
"""
|
|
|
|
from abc import ABC, abstractmethod
|
|
from typing import Dict, Any, Callable, List
|
|
|
|
from pandas import DataFrame
|
|
from skopt.space import Dimension, Integer, Real
|
|
|
|
|
|
class IHyperOpt(ABC):
|
|
"""
|
|
Interface for freqtrade hyperopts
|
|
Defines the mandatory structure must follow any custom strategies
|
|
|
|
Attributes you can use:
|
|
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
|
stoploss -> float: optimal stoploss designed for the strategy
|
|
ticker_interval -> int: value of the ticker interval to use for the strategy
|
|
"""
|
|
ticker_interval: str
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Populate indicators that will be used in the Buy and Sell strategy.
|
|
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe().
|
|
:return: A Dataframe with all mandatory indicators for the strategies.
|
|
"""
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Create a buy strategy generator.
|
|
"""
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Create a sell strategy generator.
|
|
"""
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def indicator_space() -> List[Dimension]:
|
|
"""
|
|
Create an indicator space.
|
|
"""
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Create a sell indicator space.
|
|
"""
|
|
|
|
@staticmethod
|
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
"""
|
|
Create a ROI table.
|
|
|
|
Generates the ROI table that will be used by Hyperopt.
|
|
You may override it in your custom Hyperopt class.
|
|
"""
|
|
roi_table = {}
|
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
|
|
return roi_table
|
|
|
|
@staticmethod
|
|
def stoploss_space() -> List[Dimension]:
|
|
"""
|
|
Create a stoploss space.
|
|
|
|
Defines range of stoploss values to search.
|
|
You may override it in your custom Hyperopt class.
|
|
"""
|
|
return [
|
|
Real(-0.5, -0.02, name='stoploss'),
|
|
]
|
|
|
|
@staticmethod
|
|
def roi_space() -> List[Dimension]:
|
|
"""
|
|
Create a ROI space.
|
|
|
|
Defines values to search for each ROI steps.
|
|
You may override it in your custom Hyperopt class.
|
|
"""
|
|
return [
|
|
Integer(10, 120, name='roi_t1'),
|
|
Integer(10, 60, name='roi_t2'),
|
|
Integer(10, 40, name='roi_t3'),
|
|
Real(0.01, 0.04, name='roi_p1'),
|
|
Real(0.01, 0.07, name='roi_p2'),
|
|
Real(0.01, 0.20, name='roi_p3'),
|
|
]
|