freqtrade_origin/freqtrade/freqai/prediction_models/RL/RLPrediction_agent.py
2022-08-24 13:00:55 +02:00

140 lines
4.4 KiB
Python

# common library
import gym
import numpy as np
from stable_baselines3 import A2C, DDPG, PPO, SAC, TD3
from stable_baselines3.common.callbacks import (BaseCallback, CallbackList, CheckpointCallback,
EvalCallback, StopTrainingOnRewardThreshold)
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise
from freqtrade.freqai.prediction_models.RL import config
#from freqtrade.freqai.prediction_models.RL.RLPrediction_agent_v2 import TDQN
from freqtrade.freqai.prediction_models.RL.RLPrediction_env import DEnv
# from stable_baselines3.common.vec_env import DummyVecEnv
# from meta.env_stock_trading.env_stock_trading import StockTradingEnv
# RL models from stable-baselines
MODELS = {"a2c": A2C, "ddpg": DDPG, "td3": TD3, "sac": SAC, "ppo": PPO}
MODEL_KWARGS = {x: config.__dict__[f"{x.upper()}_PARAMS"] for x in MODELS.keys()}
NOISE = {
"normal": NormalActionNoise,
"ornstein_uhlenbeck": OrnsteinUhlenbeckActionNoise,
}
class TensorboardCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard.
"""
def __init__(self, verbose=0):
super(TensorboardCallback, self).__init__(verbose)
def _on_step(self) -> bool:
try:
self.logger.record(key="train/reward", value=self.locals["rewards"][0])
except BaseException:
self.logger.record(key="train/reward", value=self.locals["reward"][0])
return True
class RLPrediction_agent:
"""Provides implementations for DRL algorithms
Based on:
https://github.com/AI4Finance-Foundation/FinRL-Meta/blob/master/agents/stablebaselines3_models.py
Attributes
----------
env: gym environment class
user-defined class
Methods
-------
get_model()
setup DRL algorithms
train_model()
train DRL algorithms in a train dataset
and output the trained model
DRL_prediction()
make a prediction in a test dataset and get results
"""
def __init__(self, env):
self.env = env
def get_model(
self,
model_name,
policy="MlpPolicy",
policy_kwargs=None,
model_kwargs=None,
reward_kwargs=None,
#total_timesteps=None,
verbose=1,
seed=None
):
if model_name not in MODELS:
raise NotImplementedError("NotImplementedError")
if model_kwargs is None:
model_kwargs = MODEL_KWARGS[model_name]
if "action_noise" in model_kwargs:
n_actions = self.env.action_space.shape[-1]
model_kwargs["action_noise"] = NOISE[model_kwargs["action_noise"]](
mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions)
)
print(model_kwargs)
model = MODELS[model_name](
policy=policy,
env=self.env,
tensorboard_log=f"{config.TENSORBOARD_LOG_DIR}/{model_name}",
verbose=verbose,
policy_kwargs=policy_kwargs,
#model_kwargs=model_kwargs,
#total_timesteps=model_kwargs["total_timesteps"],
seed=seed
#**model_kwargs,
)
return model
def train_model(self, model, tb_log_name, model_kwargs, train_df, test_df, price, price_test, window_size):
agent_params = self.freqai_info['model_training_parameters']
reward_params = self.freqai_info['model_reward_parameters']
train_env = DEnv(df=train_df, prices=price, window_size=window_size, reward_kwargs=reward_params)
eval_env = DEnv(df=test_df, prices=price_test, window_size=window_size, reward_kwargs=reward_params)
# checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/',
# name_prefix='rl_model')
checkpoint_callback = CheckpointCallback(save_freq=1000, save_path='./logs/')
eval_callback = EvalCallback(eval_env, best_model_save_path='./logs/best_model', log_path='./logs/results', eval_freq=500)
#callback_on_best = StopTrainingOnRewardThreshold(reward_threshold=-200, verbose=1)
# Create the callback list
callback = CallbackList([checkpoint_callback, eval_callback])
model = model.learn(
total_timesteps=model_kwargs["total_timesteps"],
tb_log_name=tb_log_name,
callback=callback,
#callback=TensorboardCallback(),
)
return model