mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-15 04:33:57 +00:00
1530 lines
61 KiB
Python
1530 lines
61 KiB
Python
"""
|
|
This module contains class to define a RPC communications
|
|
"""
|
|
|
|
import logging
|
|
from abc import abstractmethod
|
|
from collections.abc import Generator, Sequence
|
|
from datetime import date, datetime, timedelta, timezone
|
|
from math import isnan
|
|
from typing import Any
|
|
|
|
import psutil
|
|
from dateutil.relativedelta import relativedelta
|
|
from dateutil.tz import tzlocal
|
|
from numpy import inf, int64, mean, nan
|
|
from pandas import DataFrame, NaT
|
|
from sqlalchemy import func, select
|
|
|
|
from freqtrade import __version__
|
|
from freqtrade.configuration.timerange import TimeRange
|
|
from freqtrade.constants import CANCEL_REASON, DEFAULT_DATAFRAME_COLUMNS, Config
|
|
from freqtrade.data.history import load_data
|
|
from freqtrade.data.metrics import DrawDownResult, calculate_expectancy, calculate_max_drawdown
|
|
from freqtrade.enums import (
|
|
CandleType,
|
|
ExitCheckTuple,
|
|
ExitType,
|
|
MarketDirection,
|
|
SignalDirection,
|
|
State,
|
|
TradingMode,
|
|
)
|
|
from freqtrade.exceptions import ExchangeError, PricingError
|
|
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs
|
|
from freqtrade.exchange.exchange_types import Tickers
|
|
from freqtrade.loggers import bufferHandler
|
|
from freqtrade.persistence import KeyStoreKeys, KeyValueStore, PairLocks, Trade
|
|
from freqtrade.persistence.models import PairLock
|
|
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
|
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
|
|
from freqtrade.rpc.rpc_types import RPCSendMsg
|
|
from freqtrade.util import decimals_per_coin, dt_now, dt_ts_def, format_date, shorten_date
|
|
from freqtrade.util.datetime_helpers import dt_humanize_delta
|
|
from freqtrade.wallets import PositionWallet, Wallet
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class RPCException(Exception):
|
|
"""
|
|
Should be raised with a rpc-formatted message in an _rpc_* method
|
|
if the required state is wrong, i.e.:
|
|
|
|
raise RPCException('*Status:* `no active trade`')
|
|
"""
|
|
|
|
def __init__(self, message: str) -> None:
|
|
super().__init__(self)
|
|
self.message = message
|
|
|
|
def __str__(self):
|
|
return self.message
|
|
|
|
def __json__(self):
|
|
return {"msg": self.message}
|
|
|
|
|
|
class RPCHandler:
|
|
def __init__(self, rpc: "RPC", config: Config) -> None:
|
|
"""
|
|
Initializes RPCHandlers
|
|
:param rpc: instance of RPC Helper class
|
|
:param config: Configuration object
|
|
:return: None
|
|
"""
|
|
self._rpc = rpc
|
|
self._config: Config = config
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
"""Returns the lowercase name of the implementation"""
|
|
return self.__class__.__name__.lower()
|
|
|
|
@abstractmethod
|
|
def cleanup(self) -> None:
|
|
"""Cleanup pending module resources"""
|
|
|
|
@abstractmethod
|
|
def send_msg(self, msg: RPCSendMsg) -> None:
|
|
"""Sends a message to all registered rpc modules"""
|
|
|
|
|
|
class RPC:
|
|
"""
|
|
RPC class can be used to have extra feature, like bot data, and access to DB data
|
|
"""
|
|
|
|
# Bind _fiat_converter if needed
|
|
_fiat_converter: CryptoToFiatConverter | None = None
|
|
|
|
def __init__(self, freqtrade) -> None:
|
|
"""
|
|
Initializes all enabled rpc modules
|
|
:param freqtrade: Instance of a freqtrade bot
|
|
:return: None
|
|
"""
|
|
self._freqtrade = freqtrade
|
|
self._config: Config = freqtrade.config
|
|
if self._config.get("fiat_display_currency"):
|
|
self._fiat_converter = CryptoToFiatConverter(self._config)
|
|
|
|
@staticmethod
|
|
def _rpc_show_config(
|
|
config, botstate: State | str, strategy_version: str | None = None
|
|
) -> dict[str, Any]:
|
|
"""
|
|
Return a dict of config options.
|
|
Explicitly does NOT return the full config to avoid leakage of sensitive
|
|
information via rpc.
|
|
"""
|
|
val = {
|
|
"version": __version__,
|
|
"strategy_version": strategy_version,
|
|
"dry_run": config["dry_run"],
|
|
"trading_mode": config.get("trading_mode", "spot"),
|
|
"short_allowed": config.get("trading_mode", "spot") != "spot",
|
|
"stake_currency": config["stake_currency"],
|
|
"stake_currency_decimals": decimals_per_coin(config["stake_currency"]),
|
|
"stake_amount": str(config["stake_amount"]),
|
|
"available_capital": config.get("available_capital"),
|
|
"max_open_trades": (
|
|
config.get("max_open_trades", 0)
|
|
if config.get("max_open_trades", 0) != float("inf")
|
|
else -1
|
|
),
|
|
"minimal_roi": config["minimal_roi"].copy() if "minimal_roi" in config else {},
|
|
"stoploss": config.get("stoploss"),
|
|
"stoploss_on_exchange": config.get("order_types", {}).get(
|
|
"stoploss_on_exchange", False
|
|
),
|
|
"trailing_stop": config.get("trailing_stop"),
|
|
"trailing_stop_positive": config.get("trailing_stop_positive"),
|
|
"trailing_stop_positive_offset": config.get("trailing_stop_positive_offset"),
|
|
"trailing_only_offset_is_reached": config.get("trailing_only_offset_is_reached"),
|
|
"unfilledtimeout": config.get("unfilledtimeout"),
|
|
"use_custom_stoploss": config.get("use_custom_stoploss"),
|
|
"order_types": config.get("order_types"),
|
|
"bot_name": config.get("bot_name", "freqtrade"),
|
|
"timeframe": config.get("timeframe"),
|
|
"timeframe_ms": timeframe_to_msecs(config["timeframe"]) if "timeframe" in config else 0,
|
|
"timeframe_min": (
|
|
timeframe_to_minutes(config["timeframe"]) if "timeframe" in config else 0
|
|
),
|
|
"exchange": config["exchange"]["name"],
|
|
"strategy": config["strategy"],
|
|
"force_entry_enable": config.get("force_entry_enable", False),
|
|
"exit_pricing": config.get("exit_pricing", {}),
|
|
"entry_pricing": config.get("entry_pricing", {}),
|
|
"state": str(botstate),
|
|
"runmode": config["runmode"].value,
|
|
"position_adjustment_enable": config.get("position_adjustment_enable", False),
|
|
"max_entry_position_adjustment": (
|
|
config.get("max_entry_position_adjustment", -1)
|
|
if config.get("max_entry_position_adjustment") != float("inf")
|
|
else -1
|
|
),
|
|
}
|
|
return val
|
|
|
|
def _rpc_trade_status(self, trade_ids: list[int] | None = None) -> list[dict[str, Any]]:
|
|
"""
|
|
Below follows the RPC backend it is prefixed with rpc_ to raise awareness that it is
|
|
a remotely exposed function
|
|
"""
|
|
# Fetch open trades
|
|
if trade_ids:
|
|
trades: Sequence[Trade] = Trade.get_trades(trade_filter=Trade.id.in_(trade_ids)).all()
|
|
else:
|
|
trades = Trade.get_open_trades()
|
|
|
|
if not trades:
|
|
raise RPCException("no active trade")
|
|
else:
|
|
results = []
|
|
for trade in trades:
|
|
current_profit_fiat: float | None = None
|
|
total_profit_fiat: float | None = None
|
|
|
|
# prepare open orders details
|
|
oo_details: str | None = ""
|
|
oo_details_lst = [
|
|
f"({oo.order_type} {oo.side} rem={oo.safe_remaining:.8f})"
|
|
for oo in trade.open_orders
|
|
if oo.ft_order_side not in ["stoploss"]
|
|
]
|
|
oo_details = ", ".join(oo_details_lst)
|
|
|
|
total_profit_abs = 0.0
|
|
total_profit_ratio: float | None = None
|
|
# calculate profit and send message to user
|
|
if trade.is_open:
|
|
try:
|
|
current_rate = self._freqtrade.exchange.get_rate(
|
|
trade.pair, side="exit", is_short=trade.is_short, refresh=False
|
|
)
|
|
except (ExchangeError, PricingError):
|
|
current_rate = nan
|
|
if len(trade.select_filled_orders(trade.entry_side)) > 0:
|
|
current_profit = current_profit_abs = current_profit_fiat = nan
|
|
if not isnan(current_rate):
|
|
prof = trade.calculate_profit(current_rate)
|
|
current_profit = prof.profit_ratio
|
|
current_profit_abs = prof.profit_abs
|
|
total_profit_abs = prof.total_profit
|
|
total_profit_ratio = prof.total_profit_ratio
|
|
else:
|
|
current_profit = current_profit_abs = current_profit_fiat = 0.0
|
|
|
|
else:
|
|
# Closed trade ...
|
|
current_rate = trade.close_rate
|
|
current_profit = trade.close_profit or 0.0
|
|
current_profit_abs = trade.close_profit_abs or 0.0
|
|
|
|
# Calculate fiat profit
|
|
if not isnan(current_profit_abs) and self._fiat_converter:
|
|
current_profit_fiat = self._fiat_converter.convert_amount(
|
|
current_profit_abs,
|
|
self._freqtrade.config["stake_currency"],
|
|
self._freqtrade.config["fiat_display_currency"],
|
|
)
|
|
total_profit_fiat = self._fiat_converter.convert_amount(
|
|
total_profit_abs,
|
|
self._freqtrade.config["stake_currency"],
|
|
self._freqtrade.config["fiat_display_currency"],
|
|
)
|
|
|
|
# Calculate guaranteed profit (in case of trailing stop)
|
|
stop_entry = trade.calculate_profit(trade.stop_loss)
|
|
|
|
stoploss_entry_dist = stop_entry.profit_abs
|
|
stoploss_entry_dist_ratio = stop_entry.profit_ratio
|
|
|
|
# calculate distance to stoploss
|
|
stoploss_current_dist = trade.stop_loss - current_rate
|
|
stoploss_current_dist_ratio = stoploss_current_dist / current_rate
|
|
|
|
trade_dict = trade.to_json()
|
|
trade_dict.update(
|
|
dict(
|
|
close_profit=trade.close_profit if not trade.is_open else None,
|
|
current_rate=current_rate,
|
|
profit_ratio=current_profit,
|
|
profit_pct=round(current_profit * 100, 2),
|
|
profit_abs=current_profit_abs,
|
|
profit_fiat=current_profit_fiat,
|
|
total_profit_abs=total_profit_abs,
|
|
total_profit_fiat=total_profit_fiat,
|
|
total_profit_ratio=total_profit_ratio,
|
|
stoploss_current_dist=stoploss_current_dist,
|
|
stoploss_current_dist_ratio=round(stoploss_current_dist_ratio, 8),
|
|
stoploss_current_dist_pct=round(stoploss_current_dist_ratio * 100, 2),
|
|
stoploss_entry_dist=stoploss_entry_dist,
|
|
stoploss_entry_dist_ratio=round(stoploss_entry_dist_ratio, 8),
|
|
open_orders=oo_details,
|
|
)
|
|
)
|
|
results.append(trade_dict)
|
|
return results
|
|
|
|
def _rpc_status_table(
|
|
self, stake_currency: str, fiat_display_currency: str
|
|
) -> tuple[list, list, float]:
|
|
trades: list[Trade] = Trade.get_open_trades()
|
|
nonspot = self._config.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT
|
|
if not trades:
|
|
raise RPCException("no active trade")
|
|
else:
|
|
trades_list = []
|
|
fiat_profit_sum = nan
|
|
for trade in trades:
|
|
# calculate profit and send message to user
|
|
try:
|
|
current_rate = self._freqtrade.exchange.get_rate(
|
|
trade.pair, side="exit", is_short=trade.is_short, refresh=False
|
|
)
|
|
except (PricingError, ExchangeError):
|
|
current_rate = nan
|
|
trade_profit = nan
|
|
profit_str = f"{nan:.2%}"
|
|
else:
|
|
if trade.nr_of_successful_entries > 0:
|
|
profit = trade.calculate_profit(current_rate)
|
|
trade_profit = profit.profit_abs
|
|
profit_str = f"{profit.profit_ratio:.2%}"
|
|
else:
|
|
trade_profit = 0.0
|
|
profit_str = f"{0.0:.2f}"
|
|
leverage = f"{trade.leverage:.3g}"
|
|
direction_str = (
|
|
(f"S {leverage}x" if trade.is_short else f"L {leverage}x") if nonspot else ""
|
|
)
|
|
if self._fiat_converter:
|
|
fiat_profit = self._fiat_converter.convert_amount(
|
|
trade_profit, stake_currency, fiat_display_currency
|
|
)
|
|
if not isnan(fiat_profit):
|
|
profit_str += f" ({fiat_profit:.2f})"
|
|
fiat_profit_sum = (
|
|
fiat_profit if isnan(fiat_profit_sum) else fiat_profit_sum + fiat_profit
|
|
)
|
|
else:
|
|
profit_str += f" ({trade_profit:.2f})"
|
|
fiat_profit_sum = (
|
|
trade_profit if isnan(fiat_profit_sum) else fiat_profit_sum + trade_profit
|
|
)
|
|
|
|
active_attempt_side_symbols = [
|
|
"*" if (oo and oo.ft_order_side == trade.entry_side) else "**"
|
|
for oo in trade.open_orders
|
|
]
|
|
|
|
# example: '*.**.**' trying to enter, exit and exit with 3 different orders
|
|
active_attempt_side_symbols_str = ".".join(active_attempt_side_symbols)
|
|
|
|
detail_trade = [
|
|
f"{trade.id} {direction_str}",
|
|
trade.pair + active_attempt_side_symbols_str,
|
|
shorten_date(dt_humanize_delta(trade.open_date_utc)),
|
|
profit_str,
|
|
]
|
|
|
|
if self._config.get("position_adjustment_enable", False):
|
|
max_entry_str = ""
|
|
if self._config.get("max_entry_position_adjustment", -1) > 0:
|
|
max_entry_str = f"/{self._config['max_entry_position_adjustment'] + 1}"
|
|
filled_entries = trade.nr_of_successful_entries
|
|
detail_trade.append(f"{filled_entries}{max_entry_str}")
|
|
trades_list.append(detail_trade)
|
|
profitcol = "Profit"
|
|
if self._fiat_converter:
|
|
profitcol += " (" + fiat_display_currency + ")"
|
|
else:
|
|
profitcol += " (" + stake_currency + ")"
|
|
|
|
columns = ["ID L/S" if nonspot else "ID", "Pair", "Since", profitcol]
|
|
if self._config.get("position_adjustment_enable", False):
|
|
columns.append("# Entries")
|
|
return trades_list, columns, fiat_profit_sum
|
|
|
|
def _rpc_timeunit_profit(
|
|
self,
|
|
timescale: int,
|
|
stake_currency: str,
|
|
fiat_display_currency: str,
|
|
timeunit: str = "days",
|
|
) -> dict[str, Any]:
|
|
"""
|
|
:param timeunit: Valid entries are 'days', 'weeks', 'months'
|
|
"""
|
|
start_date = datetime.now(timezone.utc).date()
|
|
if timeunit == "weeks":
|
|
# weekly
|
|
start_date = start_date - timedelta(days=start_date.weekday()) # Monday
|
|
if timeunit == "months":
|
|
start_date = start_date.replace(day=1)
|
|
|
|
def time_offset(step: int):
|
|
if timeunit == "months":
|
|
return relativedelta(months=step)
|
|
return timedelta(**{timeunit: step})
|
|
|
|
if not (isinstance(timescale, int) and timescale > 0):
|
|
raise RPCException("timescale must be an integer greater than 0")
|
|
|
|
profit_units: dict[date, dict] = {}
|
|
daily_stake = self._freqtrade.wallets.get_total_stake_amount()
|
|
|
|
for day in range(0, timescale):
|
|
profitday = start_date - time_offset(day)
|
|
# Only query for necessary columns for performance reasons.
|
|
trades = Trade.session.execute(
|
|
select(Trade.close_profit_abs)
|
|
.filter(
|
|
Trade.is_open.is_(False),
|
|
Trade.close_date >= profitday,
|
|
Trade.close_date < (profitday + time_offset(1)),
|
|
)
|
|
.order_by(Trade.close_date)
|
|
).all()
|
|
|
|
curdayprofit = sum(
|
|
trade.close_profit_abs for trade in trades if trade.close_profit_abs is not None
|
|
)
|
|
# Calculate this periods starting balance
|
|
daily_stake = daily_stake - curdayprofit
|
|
profit_units[profitday] = {
|
|
"amount": curdayprofit,
|
|
"daily_stake": daily_stake,
|
|
"rel_profit": round(curdayprofit / daily_stake, 8) if daily_stake > 0 else 0,
|
|
"trades": len(trades),
|
|
}
|
|
|
|
data = [
|
|
{
|
|
"date": key,
|
|
"abs_profit": value["amount"],
|
|
"starting_balance": value["daily_stake"],
|
|
"rel_profit": value["rel_profit"],
|
|
"fiat_value": (
|
|
self._fiat_converter.convert_amount(
|
|
value["amount"], stake_currency, fiat_display_currency
|
|
)
|
|
if self._fiat_converter
|
|
else 0
|
|
),
|
|
"trade_count": value["trades"],
|
|
}
|
|
for key, value in profit_units.items()
|
|
]
|
|
return {
|
|
"stake_currency": stake_currency,
|
|
"fiat_display_currency": fiat_display_currency,
|
|
"data": data,
|
|
}
|
|
|
|
def _rpc_trade_history(self, limit: int, offset: int = 0, order_by_id: bool = False) -> dict:
|
|
"""Returns the X last trades"""
|
|
order_by: Any = Trade.id if order_by_id else Trade.close_date.desc()
|
|
if limit:
|
|
trades = Trade.session.scalars(
|
|
Trade.get_trades_query([Trade.is_open.is_(False)])
|
|
.order_by(order_by)
|
|
.limit(limit)
|
|
.offset(offset)
|
|
)
|
|
else:
|
|
trades = Trade.session.scalars(
|
|
Trade.get_trades_query([Trade.is_open.is_(False)]).order_by(Trade.close_date.desc())
|
|
)
|
|
|
|
output = [trade.to_json() for trade in trades]
|
|
total_trades = Trade.session.scalar(
|
|
select(func.count(Trade.id)).filter(Trade.is_open.is_(False))
|
|
)
|
|
|
|
return {
|
|
"trades": output,
|
|
"trades_count": len(output),
|
|
"offset": offset,
|
|
"total_trades": total_trades,
|
|
}
|
|
|
|
def _rpc_stats(self) -> dict[str, Any]:
|
|
"""
|
|
Generate generic stats for trades in database
|
|
"""
|
|
|
|
def trade_win_loss(trade):
|
|
if trade.close_profit > 0:
|
|
return "wins"
|
|
elif trade.close_profit < 0:
|
|
return "losses"
|
|
else:
|
|
return "draws"
|
|
|
|
trades = Trade.get_trades([Trade.is_open.is_(False)], include_orders=False)
|
|
# Duration
|
|
dur: dict[str, list[float]] = {"wins": [], "draws": [], "losses": []}
|
|
# Exit reason
|
|
exit_reasons = {}
|
|
for trade in trades:
|
|
if trade.exit_reason not in exit_reasons:
|
|
exit_reasons[trade.exit_reason] = {"wins": 0, "losses": 0, "draws": 0}
|
|
exit_reasons[trade.exit_reason][trade_win_loss(trade)] += 1
|
|
|
|
if trade.close_date is not None and trade.open_date is not None:
|
|
trade_dur = (trade.close_date - trade.open_date).total_seconds()
|
|
dur[trade_win_loss(trade)].append(trade_dur)
|
|
|
|
wins_dur = sum(dur["wins"]) / len(dur["wins"]) if len(dur["wins"]) > 0 else None
|
|
draws_dur = sum(dur["draws"]) / len(dur["draws"]) if len(dur["draws"]) > 0 else None
|
|
losses_dur = sum(dur["losses"]) / len(dur["losses"]) if len(dur["losses"]) > 0 else None
|
|
|
|
durations = {"wins": wins_dur, "draws": draws_dur, "losses": losses_dur}
|
|
return {"exit_reasons": exit_reasons, "durations": durations}
|
|
|
|
def _rpc_trade_statistics(
|
|
self, stake_currency: str, fiat_display_currency: str, start_date: datetime | None = None
|
|
) -> dict[str, Any]:
|
|
"""Returns cumulative profit statistics"""
|
|
|
|
start_date = datetime.fromtimestamp(0) if start_date is None else start_date
|
|
|
|
trade_filter = (
|
|
Trade.is_open.is_(False) & (Trade.close_date >= start_date)
|
|
) | Trade.is_open.is_(True)
|
|
trades: Sequence[Trade] = Trade.session.scalars(
|
|
Trade.get_trades_query(trade_filter, include_orders=False).order_by(Trade.id)
|
|
).all()
|
|
|
|
profit_all_coin = []
|
|
profit_all_ratio = []
|
|
profit_closed_coin = []
|
|
profit_closed_ratio = []
|
|
durations = []
|
|
winning_trades = 0
|
|
losing_trades = 0
|
|
winning_profit = 0.0
|
|
losing_profit = 0.0
|
|
|
|
for trade in trades:
|
|
current_rate: float = 0.0
|
|
|
|
if trade.close_date:
|
|
durations.append((trade.close_date - trade.open_date).total_seconds())
|
|
|
|
if not trade.is_open:
|
|
profit_ratio = trade.close_profit or 0.0
|
|
profit_abs = trade.close_profit_abs or 0.0
|
|
profit_closed_coin.append(profit_abs)
|
|
profit_closed_ratio.append(profit_ratio)
|
|
if profit_ratio >= 0:
|
|
winning_trades += 1
|
|
winning_profit += profit_abs
|
|
else:
|
|
losing_trades += 1
|
|
losing_profit += profit_abs
|
|
else:
|
|
# Get current rate
|
|
if len(trade.select_filled_orders(trade.entry_side)) == 0:
|
|
# Skip trades with no filled orders
|
|
continue
|
|
try:
|
|
current_rate = self._freqtrade.exchange.get_rate(
|
|
trade.pair, side="exit", is_short=trade.is_short, refresh=False
|
|
)
|
|
except (PricingError, ExchangeError):
|
|
current_rate = nan
|
|
profit_ratio = nan
|
|
profit_abs = nan
|
|
else:
|
|
_profit = trade.calculate_profit(trade.close_rate or current_rate)
|
|
|
|
profit_ratio = _profit.profit_ratio
|
|
profit_abs = _profit.total_profit
|
|
|
|
profit_all_coin.append(profit_abs)
|
|
profit_all_ratio.append(profit_ratio)
|
|
|
|
closed_trade_count = len([t for t in trades if not t.is_open])
|
|
|
|
best_pair = Trade.get_best_pair(start_date)
|
|
trading_volume = Trade.get_trading_volume(start_date)
|
|
|
|
# Prepare data to display
|
|
profit_closed_coin_sum = round(sum(profit_closed_coin), 8)
|
|
profit_closed_ratio_mean = float(mean(profit_closed_ratio) if profit_closed_ratio else 0.0)
|
|
profit_closed_ratio_sum = sum(profit_closed_ratio) if profit_closed_ratio else 0.0
|
|
|
|
profit_closed_fiat = (
|
|
self._fiat_converter.convert_amount(
|
|
profit_closed_coin_sum, stake_currency, fiat_display_currency
|
|
)
|
|
if self._fiat_converter
|
|
else 0
|
|
)
|
|
|
|
profit_all_coin_sum = round(sum(profit_all_coin), 8)
|
|
profit_all_ratio_mean = float(mean(profit_all_ratio) if profit_all_ratio else 0.0)
|
|
# Doing the sum is not right - overall profit needs to be based on initial capital
|
|
profit_all_ratio_sum = sum(profit_all_ratio) if profit_all_ratio else 0.0
|
|
starting_balance = self._freqtrade.wallets.get_starting_balance()
|
|
profit_closed_ratio_fromstart = 0
|
|
profit_all_ratio_fromstart = 0
|
|
if starting_balance:
|
|
profit_closed_ratio_fromstart = profit_closed_coin_sum / starting_balance
|
|
profit_all_ratio_fromstart = profit_all_coin_sum / starting_balance
|
|
|
|
profit_factor = winning_profit / abs(losing_profit) if losing_profit else float("inf")
|
|
|
|
winrate = (winning_trades / closed_trade_count) if closed_trade_count > 0 else 0
|
|
|
|
trades_df = DataFrame(
|
|
[
|
|
{
|
|
"close_date": format_date(trade.close_date),
|
|
"close_date_dt": trade.close_date,
|
|
"profit_abs": trade.close_profit_abs,
|
|
}
|
|
for trade in trades
|
|
if not trade.is_open and trade.close_date
|
|
]
|
|
)
|
|
|
|
expectancy, expectancy_ratio = calculate_expectancy(trades_df)
|
|
|
|
drawdown = DrawDownResult()
|
|
if len(trades_df) > 0:
|
|
try:
|
|
drawdown = calculate_max_drawdown(
|
|
trades_df,
|
|
value_col="profit_abs",
|
|
date_col="close_date_dt",
|
|
starting_balance=starting_balance,
|
|
)
|
|
except ValueError:
|
|
# ValueError if no losing trade.
|
|
pass
|
|
|
|
profit_all_fiat = (
|
|
self._fiat_converter.convert_amount(
|
|
profit_all_coin_sum, stake_currency, fiat_display_currency
|
|
)
|
|
if self._fiat_converter
|
|
else 0
|
|
)
|
|
|
|
first_date = trades[0].open_date_utc if trades else None
|
|
last_date = trades[-1].open_date_utc if trades else None
|
|
num = float(len(durations) or 1)
|
|
bot_start = KeyValueStore.get_datetime_value(KeyStoreKeys.BOT_START_TIME)
|
|
return {
|
|
"profit_closed_coin": profit_closed_coin_sum,
|
|
"profit_closed_percent_mean": round(profit_closed_ratio_mean * 100, 2),
|
|
"profit_closed_ratio_mean": profit_closed_ratio_mean,
|
|
"profit_closed_percent_sum": round(profit_closed_ratio_sum * 100, 2),
|
|
"profit_closed_ratio_sum": profit_closed_ratio_sum,
|
|
"profit_closed_ratio": profit_closed_ratio_fromstart,
|
|
"profit_closed_percent": round(profit_closed_ratio_fromstart * 100, 2),
|
|
"profit_closed_fiat": profit_closed_fiat,
|
|
"profit_all_coin": profit_all_coin_sum,
|
|
"profit_all_percent_mean": round(profit_all_ratio_mean * 100, 2),
|
|
"profit_all_ratio_mean": profit_all_ratio_mean,
|
|
"profit_all_percent_sum": round(profit_all_ratio_sum * 100, 2),
|
|
"profit_all_ratio_sum": profit_all_ratio_sum,
|
|
"profit_all_ratio": profit_all_ratio_fromstart,
|
|
"profit_all_percent": round(profit_all_ratio_fromstart * 100, 2),
|
|
"profit_all_fiat": profit_all_fiat,
|
|
"trade_count": len(trades),
|
|
"closed_trade_count": closed_trade_count,
|
|
"first_trade_date": format_date(first_date),
|
|
"first_trade_humanized": dt_humanize_delta(first_date) if first_date else "",
|
|
"first_trade_timestamp": dt_ts_def(first_date, 0),
|
|
"latest_trade_date": format_date(last_date),
|
|
"latest_trade_humanized": dt_humanize_delta(last_date) if last_date else "",
|
|
"latest_trade_timestamp": dt_ts_def(last_date, 0),
|
|
"avg_duration": str(timedelta(seconds=sum(durations) / num)).split(".")[0],
|
|
"best_pair": best_pair[0] if best_pair else "",
|
|
"best_rate": round(best_pair[1] * 100, 2) if best_pair else 0, # Deprecated
|
|
"best_pair_profit_ratio": best_pair[1] if best_pair else 0,
|
|
"winning_trades": winning_trades,
|
|
"losing_trades": losing_trades,
|
|
"profit_factor": profit_factor,
|
|
"winrate": winrate,
|
|
"expectancy": expectancy,
|
|
"expectancy_ratio": expectancy_ratio,
|
|
"max_drawdown": drawdown.relative_account_drawdown,
|
|
"max_drawdown_abs": drawdown.drawdown_abs,
|
|
"max_drawdown_start": format_date(drawdown.high_date),
|
|
"max_drawdown_start_timestamp": dt_ts_def(drawdown.high_date),
|
|
"max_drawdown_end": format_date(drawdown.low_date),
|
|
"max_drawdown_end_timestamp": dt_ts_def(drawdown.low_date),
|
|
"drawdown_high": drawdown.high_value,
|
|
"drawdown_low": drawdown.low_value,
|
|
"trading_volume": trading_volume,
|
|
"bot_start_timestamp": dt_ts_def(bot_start, 0),
|
|
"bot_start_date": format_date(bot_start),
|
|
}
|
|
|
|
def __balance_get_est_stake(
|
|
self, coin: str, stake_currency: str, amount: float, balance: Wallet, tickers
|
|
) -> tuple[float, float]:
|
|
est_stake = 0.0
|
|
est_bot_stake = 0.0
|
|
if coin == stake_currency:
|
|
est_stake = balance.total
|
|
if self._config.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT:
|
|
# in Futures, "total" includes the locked stake, and therefore all positions
|
|
est_stake = balance.free
|
|
est_bot_stake = amount
|
|
else:
|
|
pair = self._freqtrade.exchange.get_valid_pair_combination(coin, stake_currency)
|
|
rate: float | None = tickers.get(pair, {}).get("last", None)
|
|
if rate:
|
|
if pair.startswith(stake_currency) and not pair.endswith(stake_currency):
|
|
rate = 1.0 / rate
|
|
est_stake = rate * balance.total
|
|
est_bot_stake = rate * amount
|
|
|
|
return est_stake, est_bot_stake
|
|
|
|
def _rpc_balance(self, stake_currency: str, fiat_display_currency: str) -> dict:
|
|
"""Returns current account balance per crypto"""
|
|
currencies: list[dict] = []
|
|
total = 0.0
|
|
total_bot = 0.0
|
|
try:
|
|
tickers: Tickers = self._freqtrade.exchange.get_tickers(cached=True)
|
|
except ExchangeError:
|
|
raise RPCException("Error getting current tickers.")
|
|
|
|
open_trades: list[Trade] = Trade.get_open_trades()
|
|
open_assets: dict[str, Trade] = {t.safe_base_currency: t for t in open_trades}
|
|
self._freqtrade.wallets.update(require_update=False)
|
|
starting_capital = self._freqtrade.wallets.get_starting_balance()
|
|
starting_cap_fiat = (
|
|
self._fiat_converter.convert_amount(
|
|
starting_capital, stake_currency, fiat_display_currency
|
|
)
|
|
if self._fiat_converter
|
|
else 0
|
|
)
|
|
coin: str
|
|
balance: Wallet
|
|
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
|
|
if not balance.total:
|
|
continue
|
|
|
|
trade = open_assets.get(coin, None)
|
|
is_bot_managed = coin == stake_currency or trade is not None
|
|
trade_amount = trade.amount if trade else 0
|
|
if coin == stake_currency:
|
|
trade_amount = self._freqtrade.wallets.get_available_stake_amount()
|
|
|
|
try:
|
|
est_stake, est_stake_bot = self.__balance_get_est_stake(
|
|
coin, stake_currency, trade_amount, balance, tickers
|
|
)
|
|
except ValueError:
|
|
continue
|
|
|
|
total += est_stake
|
|
|
|
if is_bot_managed:
|
|
total_bot += est_stake_bot
|
|
currencies.append(
|
|
{
|
|
"currency": coin,
|
|
"free": balance.free,
|
|
"balance": balance.total,
|
|
"used": balance.used,
|
|
"bot_owned": trade_amount,
|
|
"est_stake": est_stake or 0,
|
|
"est_stake_bot": est_stake_bot if is_bot_managed else 0,
|
|
"stake": stake_currency,
|
|
"side": "long",
|
|
"position": 0,
|
|
"is_bot_managed": is_bot_managed,
|
|
"is_position": False,
|
|
}
|
|
)
|
|
symbol: str
|
|
position: PositionWallet
|
|
for symbol, position in self._freqtrade.wallets.get_all_positions().items():
|
|
total += position.collateral
|
|
total_bot += position.collateral
|
|
|
|
currencies.append(
|
|
{
|
|
"currency": symbol,
|
|
"free": 0,
|
|
"balance": 0,
|
|
"used": 0,
|
|
"position": position.position,
|
|
"est_stake": position.collateral,
|
|
"est_stake_bot": position.collateral,
|
|
"stake": stake_currency,
|
|
"side": position.side,
|
|
"is_bot_managed": True,
|
|
"is_position": True,
|
|
}
|
|
)
|
|
|
|
value = (
|
|
self._fiat_converter.convert_amount(total, stake_currency, fiat_display_currency)
|
|
if self._fiat_converter
|
|
else 0
|
|
)
|
|
value_bot = (
|
|
self._fiat_converter.convert_amount(total_bot, stake_currency, fiat_display_currency)
|
|
if self._fiat_converter
|
|
else 0
|
|
)
|
|
|
|
trade_count = len(Trade.get_trades_proxy())
|
|
starting_capital_ratio = (total_bot / starting_capital) - 1 if starting_capital else 0.0
|
|
starting_cap_fiat_ratio = (value_bot / starting_cap_fiat) - 1 if starting_cap_fiat else 0.0
|
|
|
|
return {
|
|
"currencies": currencies,
|
|
"total": total,
|
|
"total_bot": total_bot,
|
|
"symbol": fiat_display_currency,
|
|
"value": value,
|
|
"value_bot": value_bot,
|
|
"stake": stake_currency,
|
|
"starting_capital": starting_capital,
|
|
"starting_capital_ratio": starting_capital_ratio,
|
|
"starting_capital_pct": round(starting_capital_ratio * 100, 2),
|
|
"starting_capital_fiat": starting_cap_fiat,
|
|
"starting_capital_fiat_ratio": starting_cap_fiat_ratio,
|
|
"starting_capital_fiat_pct": round(starting_cap_fiat_ratio * 100, 2),
|
|
"trade_count": trade_count,
|
|
"note": "Simulated balances" if self._freqtrade.config["dry_run"] else "",
|
|
}
|
|
|
|
def _rpc_start(self) -> dict[str, str]:
|
|
"""Handler for start"""
|
|
if self._freqtrade.state == State.RUNNING:
|
|
return {"status": "already running"}
|
|
|
|
self._freqtrade.state = State.RUNNING
|
|
return {"status": "starting trader ..."}
|
|
|
|
def _rpc_stop(self) -> dict[str, str]:
|
|
"""Handler for stop"""
|
|
if self._freqtrade.state == State.RUNNING:
|
|
self._freqtrade.state = State.STOPPED
|
|
return {"status": "stopping trader ..."}
|
|
|
|
return {"status": "already stopped"}
|
|
|
|
def _rpc_reload_config(self) -> dict[str, str]:
|
|
"""Handler for reload_config."""
|
|
self._freqtrade.state = State.RELOAD_CONFIG
|
|
return {"status": "Reloading config ..."}
|
|
|
|
def _rpc_stopentry(self) -> dict[str, str]:
|
|
"""
|
|
Handler to stop buying, but handle open trades gracefully.
|
|
"""
|
|
if self._freqtrade.state == State.RUNNING:
|
|
# Set 'max_open_trades' to 0
|
|
self._freqtrade.config["max_open_trades"] = 0
|
|
self._freqtrade.strategy.max_open_trades = 0
|
|
|
|
return {"status": "No more entries will occur from now. Run /reload_config to reset."}
|
|
|
|
def _rpc_reload_trade_from_exchange(self, trade_id: int) -> dict[str, str]:
|
|
"""
|
|
Handler for reload_trade_from_exchange.
|
|
Reloads a trade from it's orders, should manual interaction have happened.
|
|
"""
|
|
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
|
|
if not trade:
|
|
raise RPCException(f"Could not find trade with id {trade_id}.")
|
|
|
|
self._freqtrade.handle_onexchange_order(trade)
|
|
return {"status": "Reloaded from orders from exchange"}
|
|
|
|
def __exec_force_exit(
|
|
self, trade: Trade, ordertype: str | None, amount: float | None = None
|
|
) -> bool:
|
|
# Check if there is there are open orders
|
|
trade_entry_cancelation_registry = []
|
|
for oo in trade.open_orders:
|
|
trade_entry_cancelation_res = {"order_id": oo.order_id, "cancel_state": False}
|
|
order = self._freqtrade.exchange.fetch_order(oo.order_id, trade.pair)
|
|
|
|
if order["side"] == trade.entry_side:
|
|
fully_canceled = self._freqtrade.handle_cancel_enter(
|
|
trade, order, oo, CANCEL_REASON["FORCE_EXIT"]
|
|
)
|
|
trade_entry_cancelation_res["cancel_state"] = fully_canceled
|
|
trade_entry_cancelation_registry.append(trade_entry_cancelation_res)
|
|
|
|
if order["side"] == trade.exit_side:
|
|
# Cancel order - so it is placed anew with a fresh price.
|
|
self._freqtrade.handle_cancel_exit(trade, order, oo, CANCEL_REASON["FORCE_EXIT"])
|
|
|
|
if all(tocr["cancel_state"] is False for tocr in trade_entry_cancelation_registry):
|
|
if trade.has_open_orders:
|
|
# Order cancellation failed, so we can't exit.
|
|
return False
|
|
# Get current rate and execute sell
|
|
current_rate = self._freqtrade.exchange.get_rate(
|
|
trade.pair, side="exit", is_short=trade.is_short, refresh=True
|
|
)
|
|
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
|
|
order_type = ordertype or self._freqtrade.strategy.order_types.get(
|
|
"force_exit", self._freqtrade.strategy.order_types["exit"]
|
|
)
|
|
sub_amount: float | None = None
|
|
if amount and amount < trade.amount:
|
|
# Partial exit ...
|
|
min_exit_stake = self._freqtrade.exchange.get_min_pair_stake_amount(
|
|
trade.pair, current_rate, trade.stop_loss_pct
|
|
)
|
|
remaining = (trade.amount - amount) * current_rate
|
|
if remaining < min_exit_stake:
|
|
raise RPCException(f"Remaining amount of {remaining} would be too small.")
|
|
sub_amount = amount
|
|
|
|
self._freqtrade.execute_trade_exit(
|
|
trade, current_rate, exit_check, ordertype=order_type, sub_trade_amt=sub_amount
|
|
)
|
|
|
|
return True
|
|
return False
|
|
|
|
def _rpc_force_exit(
|
|
self, trade_id: str, ordertype: str | None = None, *, amount: float | None = None
|
|
) -> dict[str, str]:
|
|
"""
|
|
Handler for forceexit <id>.
|
|
Sells the given trade at current price
|
|
"""
|
|
|
|
if self._freqtrade.state != State.RUNNING:
|
|
raise RPCException("trader is not running")
|
|
|
|
with self._freqtrade._exit_lock:
|
|
if trade_id == "all":
|
|
# Execute exit for all open orders
|
|
for trade in Trade.get_open_trades():
|
|
self.__exec_force_exit(trade, ordertype)
|
|
Trade.commit()
|
|
self._freqtrade.wallets.update()
|
|
return {"result": "Created exit orders for all open trades."}
|
|
|
|
# Query for trade
|
|
trade = Trade.get_trades(
|
|
trade_filter=[
|
|
Trade.id == trade_id,
|
|
Trade.is_open.is_(True),
|
|
]
|
|
).first()
|
|
if not trade:
|
|
logger.warning("force_exit: Invalid argument received")
|
|
raise RPCException("invalid argument")
|
|
|
|
result = self.__exec_force_exit(trade, ordertype, amount)
|
|
Trade.commit()
|
|
self._freqtrade.wallets.update()
|
|
if not result:
|
|
raise RPCException("Failed to exit trade.")
|
|
return {"result": f"Created exit order for trade {trade_id}."}
|
|
|
|
def _force_entry_validations(self, pair: str, order_side: SignalDirection):
|
|
if not self._freqtrade.config.get("force_entry_enable", False):
|
|
raise RPCException("Force_entry not enabled.")
|
|
|
|
if self._freqtrade.state != State.RUNNING:
|
|
raise RPCException("trader is not running")
|
|
|
|
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
|
|
raise RPCException("Can't go short on Spot markets.")
|
|
|
|
if pair not in self._freqtrade.exchange.get_markets(tradable_only=True):
|
|
raise RPCException("Symbol does not exist or market is not active.")
|
|
# Check if pair quote currency equals to the stake currency.
|
|
stake_currency = self._freqtrade.config.get("stake_currency")
|
|
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
|
|
raise RPCException(
|
|
f"Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed."
|
|
)
|
|
|
|
def _rpc_force_entry(
|
|
self,
|
|
pair: str,
|
|
price: float | None,
|
|
*,
|
|
order_type: str | None = None,
|
|
order_side: SignalDirection = SignalDirection.LONG,
|
|
stake_amount: float | None = None,
|
|
enter_tag: str | None = "force_entry",
|
|
leverage: float | None = None,
|
|
) -> Trade | None:
|
|
"""
|
|
Handler for forcebuy <asset> <price>
|
|
Buys a pair trade at the given or current price
|
|
"""
|
|
self._force_entry_validations(pair, order_side)
|
|
|
|
# check if valid pair
|
|
|
|
# check if pair already has an open pair
|
|
trade: Trade | None = Trade.get_trades(
|
|
[Trade.is_open.is_(True), Trade.pair == pair]
|
|
).first()
|
|
is_short = order_side == SignalDirection.SHORT
|
|
if trade:
|
|
is_short = trade.is_short
|
|
if not self._freqtrade.strategy.position_adjustment_enable:
|
|
raise RPCException(f"position for {pair} already open - id: {trade.id}")
|
|
if trade.has_open_orders:
|
|
raise RPCException(
|
|
f"position for {pair} already open - id: {trade.id} "
|
|
f"and has open order {','.join(trade.open_orders_ids)}"
|
|
)
|
|
else:
|
|
if Trade.get_open_trade_count() >= self._config["max_open_trades"]:
|
|
raise RPCException("Maximum number of trades is reached.")
|
|
|
|
if not stake_amount:
|
|
# gen stake amount
|
|
stake_amount = self._freqtrade.wallets.get_trade_stake_amount(
|
|
pair, self._config["max_open_trades"]
|
|
)
|
|
|
|
# execute buy
|
|
if not order_type:
|
|
order_type = self._freqtrade.strategy.order_types.get(
|
|
"force_entry", self._freqtrade.strategy.order_types["entry"]
|
|
)
|
|
with self._freqtrade._exit_lock:
|
|
if self._freqtrade.execute_entry(
|
|
pair,
|
|
stake_amount,
|
|
price,
|
|
ordertype=order_type,
|
|
trade=trade,
|
|
is_short=is_short,
|
|
enter_tag=enter_tag,
|
|
leverage_=leverage,
|
|
mode="pos_adjust" if trade else "initial",
|
|
):
|
|
Trade.commit()
|
|
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
|
|
return trade
|
|
else:
|
|
raise RPCException(f"Failed to enter position for {pair}.")
|
|
|
|
def _rpc_cancel_open_order(self, trade_id: int):
|
|
if self._freqtrade.state != State.RUNNING:
|
|
raise RPCException("trader is not running")
|
|
with self._freqtrade._exit_lock:
|
|
# Query for trade
|
|
trade = Trade.get_trades(
|
|
trade_filter=[
|
|
Trade.id == trade_id,
|
|
Trade.is_open.is_(True),
|
|
]
|
|
).first()
|
|
if not trade:
|
|
logger.warning("cancel_open_order: Invalid trade_id received.")
|
|
raise RPCException("Invalid trade_id.")
|
|
if not trade.has_open_orders:
|
|
logger.warning("cancel_open_order: No open order for trade_id.")
|
|
raise RPCException("No open order for trade_id.")
|
|
|
|
for open_order in trade.open_orders:
|
|
try:
|
|
order = self._freqtrade.exchange.fetch_order(open_order.order_id, trade.pair)
|
|
except ExchangeError as e:
|
|
logger.info(f"Cannot query order for {trade} due to {e}.", exc_info=True)
|
|
raise RPCException("Order not found.")
|
|
self._freqtrade.handle_cancel_order(
|
|
order, open_order, trade, CANCEL_REASON["USER_CANCEL"]
|
|
)
|
|
Trade.commit()
|
|
|
|
def _rpc_delete(self, trade_id: int) -> dict[str, str | int]:
|
|
"""
|
|
Handler for delete <id>.
|
|
Delete the given trade and close eventually existing open orders.
|
|
"""
|
|
with self._freqtrade._exit_lock:
|
|
c_count = 0
|
|
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
|
|
if not trade:
|
|
logger.warning("delete trade: Invalid argument received")
|
|
raise RPCException("invalid argument")
|
|
|
|
# Try cancelling regular order if that exists
|
|
for open_order in trade.open_orders:
|
|
try:
|
|
self._freqtrade.exchange.cancel_order(open_order.order_id, trade.pair)
|
|
c_count += 1
|
|
except ExchangeError:
|
|
pass
|
|
|
|
# cancel stoploss on exchange orders ...
|
|
if (
|
|
self._freqtrade.strategy.order_types.get("stoploss_on_exchange")
|
|
and trade.has_open_sl_orders
|
|
):
|
|
for oslo in trade.open_sl_orders:
|
|
try:
|
|
self._freqtrade.exchange.cancel_stoploss_order(oslo.order_id, trade.pair)
|
|
c_count += 1
|
|
except ExchangeError:
|
|
pass
|
|
|
|
trade.delete()
|
|
self._freqtrade.wallets.update()
|
|
return {
|
|
"result": "success",
|
|
"trade_id": trade_id,
|
|
"result_msg": f"Deleted trade {trade_id}. Closed {c_count} open orders.",
|
|
"cancel_order_count": c_count,
|
|
}
|
|
|
|
def _rpc_list_custom_data(self, trade_id: int, key: str | None) -> list[dict[str, Any]]:
|
|
# Query for trade
|
|
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
|
|
if trade is None:
|
|
return []
|
|
# Query custom_data
|
|
custom_data = []
|
|
if key:
|
|
data = trade.get_custom_data(key=key)
|
|
if data:
|
|
custom_data = [data]
|
|
else:
|
|
custom_data = trade.get_all_custom_data()
|
|
return [
|
|
{
|
|
"id": data_entry.id,
|
|
"ft_trade_id": data_entry.ft_trade_id,
|
|
"cd_key": data_entry.cd_key,
|
|
"cd_type": data_entry.cd_type,
|
|
"cd_value": data_entry.cd_value,
|
|
"created_at": data_entry.created_at,
|
|
"updated_at": data_entry.updated_at,
|
|
}
|
|
for data_entry in custom_data
|
|
]
|
|
|
|
def _rpc_performance(self) -> list[dict[str, Any]]:
|
|
"""
|
|
Handler for performance.
|
|
Shows a performance statistic from finished trades
|
|
"""
|
|
pair_rates = Trade.get_overall_performance()
|
|
|
|
return pair_rates
|
|
|
|
def _rpc_enter_tag_performance(self, pair: str | None) -> list[dict[str, Any]]:
|
|
"""
|
|
Handler for buy tag performance.
|
|
Shows a performance statistic from finished trades
|
|
"""
|
|
return Trade.get_enter_tag_performance(pair)
|
|
|
|
def _rpc_exit_reason_performance(self, pair: str | None) -> list[dict[str, Any]]:
|
|
"""
|
|
Handler for exit reason performance.
|
|
Shows a performance statistic from finished trades
|
|
"""
|
|
return Trade.get_exit_reason_performance(pair)
|
|
|
|
def _rpc_mix_tag_performance(self, pair: str | None) -> list[dict[str, Any]]:
|
|
"""
|
|
Handler for mix tag (enter_tag + exit_reason) performance.
|
|
Shows a performance statistic from finished trades
|
|
"""
|
|
mix_tags = Trade.get_mix_tag_performance(pair)
|
|
|
|
return mix_tags
|
|
|
|
def _rpc_count(self) -> dict[str, float]:
|
|
"""Returns the number of trades running"""
|
|
if self._freqtrade.state != State.RUNNING:
|
|
raise RPCException("trader is not running")
|
|
|
|
trades = Trade.get_open_trades()
|
|
return {
|
|
"current": len(trades),
|
|
"max": (
|
|
int(self._freqtrade.config["max_open_trades"])
|
|
if self._freqtrade.config["max_open_trades"] != float("inf")
|
|
else -1
|
|
),
|
|
"total_stake": sum((trade.open_rate * trade.amount) for trade in trades),
|
|
}
|
|
|
|
def _rpc_locks(self) -> dict[str, Any]:
|
|
"""Returns the current locks"""
|
|
|
|
locks = PairLocks.get_pair_locks(None)
|
|
return {"lock_count": len(locks), "locks": [lock.to_json() for lock in locks]}
|
|
|
|
def _rpc_delete_lock(
|
|
self, lockid: int | None = None, pair: str | None = None
|
|
) -> dict[str, Any]:
|
|
"""Delete specific lock(s)"""
|
|
locks: Sequence[PairLock] = []
|
|
|
|
if pair:
|
|
locks = PairLocks.get_pair_locks(pair)
|
|
if lockid:
|
|
locks = PairLock.session.scalars(select(PairLock).filter(PairLock.id == lockid)).all()
|
|
|
|
for lock in locks:
|
|
lock.active = False
|
|
lock.lock_end_time = datetime.now(timezone.utc)
|
|
|
|
Trade.commit()
|
|
|
|
return self._rpc_locks()
|
|
|
|
def _rpc_add_lock(self, pair: str, until: datetime, reason: str | None, side: str) -> PairLock:
|
|
lock = PairLocks.lock_pair(
|
|
pair=pair,
|
|
until=until,
|
|
reason=reason,
|
|
side=side,
|
|
)
|
|
return lock
|
|
|
|
def _rpc_whitelist(self) -> dict:
|
|
"""Returns the currently active whitelist"""
|
|
res = {
|
|
"method": self._freqtrade.pairlists.name_list,
|
|
"length": len(self._freqtrade.active_pair_whitelist),
|
|
"whitelist": self._freqtrade.active_pair_whitelist,
|
|
}
|
|
return res
|
|
|
|
def _rpc_blacklist_delete(self, delete: list[str]) -> dict:
|
|
"""Removes pairs from currently active blacklist"""
|
|
errors = {}
|
|
for pair in delete:
|
|
if pair in self._freqtrade.pairlists.blacklist:
|
|
self._freqtrade.pairlists.blacklist.remove(pair)
|
|
else:
|
|
errors[pair] = {"error_msg": f"Pair {pair} is not in the current blacklist."}
|
|
resp = self._rpc_blacklist()
|
|
resp["errors"] = errors
|
|
return resp
|
|
|
|
def _rpc_blacklist(self, add: list[str] | None = None) -> dict:
|
|
"""Returns the currently active blacklist"""
|
|
errors = {}
|
|
if add:
|
|
for pair in add:
|
|
if pair not in self._freqtrade.pairlists.blacklist:
|
|
try:
|
|
expand_pairlist([pair], self._freqtrade.exchange.get_markets().keys())
|
|
self._freqtrade.pairlists.blacklist.append(pair)
|
|
|
|
except ValueError:
|
|
errors[pair] = {"error_msg": f"Pair {pair} is not a valid wildcard."}
|
|
else:
|
|
errors[pair] = {"error_msg": f"Pair {pair} already in pairlist."}
|
|
|
|
res = {
|
|
"method": self._freqtrade.pairlists.name_list,
|
|
"length": len(self._freqtrade.pairlists.blacklist),
|
|
"blacklist": self._freqtrade.pairlists.blacklist,
|
|
"blacklist_expanded": self._freqtrade.pairlists.expanded_blacklist,
|
|
"errors": errors,
|
|
}
|
|
return res
|
|
|
|
@staticmethod
|
|
def _rpc_get_logs(limit: int | None) -> dict[str, Any]:
|
|
"""Returns the last X logs"""
|
|
if limit:
|
|
buffer = bufferHandler.buffer[-limit:]
|
|
else:
|
|
buffer = bufferHandler.buffer
|
|
records = [
|
|
[
|
|
format_date(datetime.fromtimestamp(r.created)),
|
|
r.created * 1000,
|
|
r.name,
|
|
r.levelname,
|
|
r.message + ("\n" + r.exc_text if r.exc_text else ""),
|
|
]
|
|
for r in buffer
|
|
]
|
|
|
|
# Log format:
|
|
# [logtime-formatted, logepoch, logger-name, loglevel, message \n + exception]
|
|
# e.g. ["2020-08-27 11:35:01", 1598520901097.9397,
|
|
# "freqtrade.worker", "INFO", "Starting worker develop"]
|
|
|
|
return {"log_count": len(records), "logs": records}
|
|
|
|
def _rpc_edge(self) -> list[dict[str, Any]]:
|
|
"""Returns information related to Edge"""
|
|
if not self._freqtrade.edge:
|
|
raise RPCException("Edge is not enabled.")
|
|
return self._freqtrade.edge.accepted_pairs()
|
|
|
|
@staticmethod
|
|
def _convert_dataframe_to_dict(
|
|
strategy: str,
|
|
pair: str,
|
|
timeframe: str,
|
|
dataframe: DataFrame,
|
|
last_analyzed: datetime,
|
|
selected_cols: list[str] | None,
|
|
) -> dict[str, Any]:
|
|
has_content = len(dataframe) != 0
|
|
dataframe_columns = list(dataframe.columns)
|
|
signals = {
|
|
"enter_long": 0,
|
|
"exit_long": 0,
|
|
"enter_short": 0,
|
|
"exit_short": 0,
|
|
}
|
|
if has_content:
|
|
if selected_cols is not None:
|
|
# Ensure OHLCV columns are always present
|
|
cols_set = set(DEFAULT_DATAFRAME_COLUMNS + list(signals.keys()) + selected_cols)
|
|
df_cols = [col for col in dataframe_columns if col in cols_set]
|
|
dataframe = dataframe.loc[:, df_cols]
|
|
|
|
dataframe.loc[:, "__date_ts"] = dataframe.loc[:, "date"].astype(int64) // 1000 // 1000
|
|
# Move signal close to separate column when signal for easy plotting
|
|
for sig_type in signals.keys():
|
|
if sig_type in dataframe.columns:
|
|
mask = dataframe[sig_type] == 1
|
|
signals[sig_type] = int(mask.sum())
|
|
dataframe.loc[mask, f"_{sig_type}_signal_close"] = dataframe.loc[mask, "close"]
|
|
|
|
# band-aid until this is fixed:
|
|
# https://github.com/pandas-dev/pandas/issues/45836
|
|
datetime_types = ["datetime", "datetime64", "datetime64[ns, UTC]"]
|
|
date_columns = dataframe.select_dtypes(include=datetime_types)
|
|
for date_column in date_columns:
|
|
# replace NaT with `None`
|
|
dataframe[date_column] = dataframe[date_column].astype(object).replace({NaT: None})
|
|
|
|
dataframe = dataframe.replace({inf: None, -inf: None, nan: None})
|
|
|
|
res = {
|
|
"pair": pair,
|
|
"timeframe": timeframe,
|
|
"timeframe_ms": timeframe_to_msecs(timeframe),
|
|
"strategy": strategy,
|
|
"all_columns": dataframe_columns,
|
|
"columns": list(dataframe.columns),
|
|
"data": dataframe.values.tolist(),
|
|
"length": len(dataframe),
|
|
"buy_signals": signals["enter_long"], # Deprecated
|
|
"sell_signals": signals["exit_long"], # Deprecated
|
|
"enter_long_signals": signals["enter_long"],
|
|
"exit_long_signals": signals["exit_long"],
|
|
"enter_short_signals": signals["enter_short"],
|
|
"exit_short_signals": signals["exit_short"],
|
|
"last_analyzed": last_analyzed,
|
|
"last_analyzed_ts": int(last_analyzed.timestamp()),
|
|
"data_start": "",
|
|
"data_start_ts": 0,
|
|
"data_stop": "",
|
|
"data_stop_ts": 0,
|
|
}
|
|
if has_content:
|
|
res.update(
|
|
{
|
|
"data_start": str(dataframe.iloc[0]["date"]),
|
|
"data_start_ts": int(dataframe.iloc[0]["__date_ts"]),
|
|
"data_stop": str(dataframe.iloc[-1]["date"]),
|
|
"data_stop_ts": int(dataframe.iloc[-1]["__date_ts"]),
|
|
}
|
|
)
|
|
return res
|
|
|
|
def _rpc_analysed_dataframe(
|
|
self, pair: str, timeframe: str, limit: int | None, selected_cols: list[str] | None
|
|
) -> dict[str, Any]:
|
|
"""Analyzed dataframe in Dict form"""
|
|
|
|
_data, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
|
|
return RPC._convert_dataframe_to_dict(
|
|
self._freqtrade.config["strategy"], pair, timeframe, _data, last_analyzed, selected_cols
|
|
)
|
|
|
|
def __rpc_analysed_dataframe_raw(
|
|
self, pair: str, timeframe: str, limit: int | None
|
|
) -> tuple[DataFrame, datetime]:
|
|
"""
|
|
Get the dataframe and last analyze from the dataprovider
|
|
|
|
:param pair: The pair to get
|
|
:param timeframe: The timeframe of data to get
|
|
:param limit: The amount of candles in the dataframe
|
|
"""
|
|
_data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe(pair, timeframe)
|
|
_data = _data.copy()
|
|
|
|
if limit:
|
|
_data = _data.iloc[-limit:]
|
|
|
|
return _data, last_analyzed
|
|
|
|
def _ws_all_analysed_dataframes(
|
|
self, pairlist: list[str], limit: int | None
|
|
) -> Generator[dict[str, Any], None, None]:
|
|
"""
|
|
Get the analysed dataframes of each pair in the pairlist.
|
|
If specified, only return the most recent `limit` candles for
|
|
each dataframe.
|
|
|
|
:param pairlist: A list of pairs to get
|
|
:param limit: If an integer, limits the size of dataframe
|
|
If a list of string date times, only returns those candles
|
|
:returns: A generator of dictionaries with the key, dataframe, and last analyzed timestamp
|
|
"""
|
|
timeframe = self._freqtrade.config["timeframe"]
|
|
candle_type = self._freqtrade.config.get("candle_type_def", CandleType.SPOT)
|
|
|
|
for pair in pairlist:
|
|
dataframe, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
|
|
|
|
yield {"key": (pair, timeframe, candle_type), "df": dataframe, "la": last_analyzed}
|
|
|
|
def _ws_request_analyzed_df(self, limit: int | None = None, pair: str | None = None):
|
|
"""Historical Analyzed Dataframes for WebSocket"""
|
|
pairlist = [pair] if pair else self._freqtrade.active_pair_whitelist
|
|
|
|
return self._ws_all_analysed_dataframes(pairlist, limit)
|
|
|
|
def _ws_request_whitelist(self):
|
|
"""Whitelist data for WebSocket"""
|
|
return self._freqtrade.active_pair_whitelist
|
|
|
|
@staticmethod
|
|
def _rpc_analysed_history_full(
|
|
config: Config, pair: str, timeframe: str, exchange, selected_cols: list[str] | None
|
|
) -> dict[str, Any]:
|
|
timerange_parsed = TimeRange.parse_timerange(config.get("timerange"))
|
|
|
|
from freqtrade.data.converter import trim_dataframe
|
|
from freqtrade.data.dataprovider import DataProvider
|
|
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
|
|
|
strategy = StrategyResolver.load_strategy(config)
|
|
startup_candles = strategy.startup_candle_count
|
|
|
|
_data = load_data(
|
|
datadir=config["datadir"],
|
|
pairs=[pair],
|
|
timeframe=timeframe,
|
|
timerange=timerange_parsed,
|
|
data_format=config["dataformat_ohlcv"],
|
|
candle_type=config.get("candle_type_def", CandleType.SPOT),
|
|
startup_candles=startup_candles,
|
|
)
|
|
if pair not in _data:
|
|
raise RPCException(
|
|
f"No data for {pair}, {timeframe} in {config.get('timerange')} found."
|
|
)
|
|
|
|
strategy.dp = DataProvider(config, exchange=exchange, pairlists=None)
|
|
strategy.ft_bot_start()
|
|
|
|
df_analyzed = strategy.analyze_ticker(_data[pair], {"pair": pair})
|
|
df_analyzed = trim_dataframe(df_analyzed, timerange_parsed, startup_candles=startup_candles)
|
|
|
|
return RPC._convert_dataframe_to_dict(
|
|
strategy.get_strategy_name(),
|
|
pair,
|
|
timeframe,
|
|
df_analyzed.copy(),
|
|
dt_now(),
|
|
selected_cols,
|
|
)
|
|
|
|
def _rpc_plot_config(self) -> dict[str, Any]:
|
|
if (
|
|
self._freqtrade.strategy.plot_config
|
|
and "subplots" not in self._freqtrade.strategy.plot_config
|
|
):
|
|
self._freqtrade.strategy.plot_config["subplots"] = {}
|
|
return self._freqtrade.strategy.plot_config
|
|
|
|
@staticmethod
|
|
def _rpc_plot_config_with_strategy(config: Config) -> dict[str, Any]:
|
|
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
|
|
|
strategy = StrategyResolver.load_strategy(config)
|
|
# Manually load hyperparameters, as we don't call the bot-start callback.
|
|
strategy.ft_load_hyper_params(False)
|
|
|
|
if strategy.plot_config and "subplots" not in strategy.plot_config:
|
|
strategy.plot_config["subplots"] = {}
|
|
return strategy.plot_config
|
|
|
|
@staticmethod
|
|
def _rpc_sysinfo() -> dict[str, Any]:
|
|
return {
|
|
"cpu_pct": psutil.cpu_percent(interval=1, percpu=True),
|
|
"ram_pct": psutil.virtual_memory().percent,
|
|
}
|
|
|
|
def health(self) -> dict[str, str | int | None]:
|
|
last_p = self._freqtrade.last_process
|
|
res: dict[str, None | str | int] = {
|
|
"last_process": None,
|
|
"last_process_loc": None,
|
|
"last_process_ts": None,
|
|
"bot_start": None,
|
|
"bot_start_loc": None,
|
|
"bot_start_ts": None,
|
|
"bot_startup": None,
|
|
"bot_startup_loc": None,
|
|
"bot_startup_ts": None,
|
|
}
|
|
|
|
if last_p is not None:
|
|
res.update(
|
|
{
|
|
"last_process": str(last_p),
|
|
"last_process_loc": format_date(last_p.astimezone(tzlocal())),
|
|
"last_process_ts": int(last_p.timestamp()),
|
|
}
|
|
)
|
|
|
|
if bot_start := KeyValueStore.get_datetime_value(KeyStoreKeys.BOT_START_TIME):
|
|
res.update(
|
|
{
|
|
"bot_start": str(bot_start),
|
|
"bot_start_loc": format_date(bot_start.astimezone(tzlocal())),
|
|
"bot_start_ts": int(bot_start.timestamp()),
|
|
}
|
|
)
|
|
if bot_startup := KeyValueStore.get_datetime_value(KeyStoreKeys.STARTUP_TIME):
|
|
res.update(
|
|
{
|
|
"bot_startup": str(bot_startup),
|
|
"bot_startup_loc": format_date(bot_startup.astimezone(tzlocal())),
|
|
"bot_startup_ts": int(bot_startup.timestamp()),
|
|
}
|
|
)
|
|
|
|
return res
|
|
|
|
def _update_market_direction(self, direction: MarketDirection) -> None:
|
|
self._freqtrade.strategy.market_direction = direction
|
|
|
|
def _get_market_direction(self) -> MarketDirection:
|
|
return self._freqtrade.strategy.market_direction
|