freqtrade_origin/freqtrade/strategy/resolver.py
2018-03-25 15:12:39 +02:00

167 lines
6.1 KiB
Python

# pragma pylint: disable=attribute-defined-outside-init
"""
This module load custom strategies
"""
import importlib.util
import inspect
import os
from collections import OrderedDict
from typing import Optional, Dict, Type
from pandas import DataFrame
from freqtrade.constants import Constants
from freqtrade.logger import Logger
from freqtrade.strategy.interface import IStrategy
logger = Logger(name=__name__).get_logger()
class StrategyResolver(object):
"""
This class contains all the logic to load custom strategy class
"""
def __init__(self, config: Optional[Dict] = None) -> None:
"""
Load the custom class from config parameter
:param config:
:return:
"""
config = config or {}
# Verify the strategy is in the configuration, otherwise fallback to the default strategy
if 'strategy' in config:
strategy = config['strategy']
else:
strategy = Constants.DEFAULT_STRATEGY
# Try to load the strategy
self._load_strategy(strategy)
# Set attributes
# Check if we need to override configuration
if 'minimal_roi' in config:
self.custom_strategy.minimal_roi = config['minimal_roi']
logger.info("Override strategy \'minimal_roi\' with value in config file.")
if 'stoploss' in config:
self.custom_strategy.stoploss = config['stoploss']
logger.info(
"Override strategy \'stoploss\' with value in config file: %s.", config['stoploss']
)
if 'ticker_interval' in config:
self.custom_strategy.ticker_interval = config['ticker_interval']
logger.info(
"Override strategy \'ticker_interval\' with value in config file: %s.",
config['ticker_interval']
)
# Minimal ROI designed for the strategy
self.minimal_roi = OrderedDict(sorted(
{int(key): value for (key, value) in self.custom_strategy.minimal_roi.items()}.items(),
key=lambda t: t[0])) # sort after converting to number
# Optimal stoploss designed for the strategy
self.stoploss = float(self.custom_strategy.stoploss)
self.ticker_interval = int(self.custom_strategy.ticker_interval)
def _load_strategy(self, strategy_name: str) -> None:
"""
Search and loads the specified strategy.
:param strategy_name: name of the module to import
:return: None
"""
try:
current_path = os.path.dirname(os.path.realpath(__file__))
abs_paths = [
os.path.join(current_path, '..', '..', 'user_data', 'strategies'),
current_path,
]
for path in abs_paths:
self.custom_strategy = self._search_strategy(path, strategy_name)
if self.custom_strategy:
logger.info('Using resolved strategy %s from \'%s\'', strategy_name, path)
return None
raise ImportError('not found')
# Fallback to the default strategy
except (ImportError, TypeError) as error:
logger.error(
"Impossible to load Strategy '%s'. This class does not exist"
" or contains Python code errors",
strategy_name
)
logger.error(
"The error is:\n%s.",
error
)
@staticmethod
def _get_valid_strategies(module_path: str, strategy_name: str) -> Optional[Type[IStrategy]]:
"""
Returns a list of all possible strategies for the given module_path
:param module_path: absolute path to the module
:param strategy_name: Class name of the strategy
:return: Tuple with (name, class) or None
"""
# Generate spec based on absolute path
spec = importlib.util.spec_from_file_location('user_data.strategies', module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
valid_strategies_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass)
if strategy_name == name and IStrategy in obj.__bases__
)
return next(valid_strategies_gen, None)
@staticmethod
def _search_strategy(directory: str, strategy_name: str) -> Optional[IStrategy]:
"""
Search for the strategy_name in the given directory
:param directory: relative or absolute directory path
:return: name of the strategy class
"""
logger.debug('Searching for strategy %s in \'%s\'', strategy_name, directory)
for entry in os.listdir(directory):
# Only consider python files
if not entry.endswith('.py'):
logger.debug('Ignoring %s', entry)
continue
strategy = StrategyResolver._get_valid_strategies(
os.path.abspath(os.path.join(directory, entry)), strategy_name
)
if strategy:
return strategy()
return None
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:return: a Dataframe with all mandatory indicators for the strategies
"""
return self.custom_strategy.populate_indicators(dataframe)
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
:return:
"""
return self.custom_strategy.populate_buy_trend(dataframe)
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
return self.custom_strategy.populate_sell_trend(dataframe)