freqtrade_origin/freqtrade/rpc/rpc.py

1530 lines
62 KiB
Python

"""
This module contains class to define a RPC communications
"""
import logging
from abc import abstractmethod
from datetime import date, datetime, timedelta, timezone
from math import isnan
from typing import Any, Dict, Generator, List, Optional, Sequence, Tuple, Union
import psutil
from dateutil.relativedelta import relativedelta
from dateutil.tz import tzlocal
from numpy import NAN, inf, int64, mean
from pandas import DataFrame, NaT
from sqlalchemy import func, select
from freqtrade import __version__
from freqtrade.configuration.timerange import TimeRange
from freqtrade.constants import CANCEL_REASON, DEFAULT_DATAFRAME_COLUMNS, Config
from freqtrade.data.history import load_data
from freqtrade.data.metrics import DrawDownResult, calculate_expectancy, calculate_max_drawdown
from freqtrade.enums import (
CandleType,
ExitCheckTuple,
ExitType,
MarketDirection,
SignalDirection,
State,
TradingMode,
)
from freqtrade.exceptions import ExchangeError, PricingError
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs
from freqtrade.exchange.types import Tickers
from freqtrade.loggers import bufferHandler
from freqtrade.persistence import KeyStoreKeys, KeyValueStore, PairLocks, Trade
from freqtrade.persistence.models import PairLock
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
from freqtrade.rpc.rpc_types import RPCSendMsg
from freqtrade.util import decimals_per_coin, dt_now, dt_ts_def, format_date, shorten_date
from freqtrade.util.datetime_helpers import dt_humanize_delta
from freqtrade.wallets import PositionWallet, Wallet
logger = logging.getLogger(__name__)
class RPCException(Exception):
"""
Should be raised with a rpc-formatted message in an _rpc_* method
if the required state is wrong, i.e.:
raise RPCException('*Status:* `no active trade`')
"""
def __init__(self, message: str) -> None:
super().__init__(self)
self.message = message
def __str__(self):
return self.message
def __json__(self):
return {"msg": self.message}
class RPCHandler:
def __init__(self, rpc: "RPC", config: Config) -> None:
"""
Initializes RPCHandlers
:param rpc: instance of RPC Helper class
:param config: Configuration object
:return: None
"""
self._rpc = rpc
self._config: Config = config
@property
def name(self) -> str:
"""Returns the lowercase name of the implementation"""
return self.__class__.__name__.lower()
@abstractmethod
def cleanup(self) -> None:
"""Cleanup pending module resources"""
@abstractmethod
def send_msg(self, msg: RPCSendMsg) -> None:
"""Sends a message to all registered rpc modules"""
class RPC:
"""
RPC class can be used to have extra feature, like bot data, and access to DB data
"""
# Bind _fiat_converter if needed
_fiat_converter: Optional[CryptoToFiatConverter] = None
def __init__(self, freqtrade) -> None:
"""
Initializes all enabled rpc modules
:param freqtrade: Instance of a freqtrade bot
:return: None
"""
self._freqtrade = freqtrade
self._config: Config = freqtrade.config
if self._config.get("fiat_display_currency"):
self._fiat_converter = CryptoToFiatConverter(self._config)
@staticmethod
def _rpc_show_config(
config, botstate: Union[State, str], strategy_version: Optional[str] = None
) -> Dict[str, Any]:
"""
Return a dict of config options.
Explicitly does NOT return the full config to avoid leakage of sensitive
information via rpc.
"""
val = {
"version": __version__,
"strategy_version": strategy_version,
"dry_run": config["dry_run"],
"trading_mode": config.get("trading_mode", "spot"),
"short_allowed": config.get("trading_mode", "spot") != "spot",
"stake_currency": config["stake_currency"],
"stake_currency_decimals": decimals_per_coin(config["stake_currency"]),
"stake_amount": str(config["stake_amount"]),
"available_capital": config.get("available_capital"),
"max_open_trades": (
config.get("max_open_trades", 0)
if config.get("max_open_trades", 0) != float("inf")
else -1
),
"minimal_roi": config["minimal_roi"].copy() if "minimal_roi" in config else {},
"stoploss": config.get("stoploss"),
"stoploss_on_exchange": config.get("order_types", {}).get(
"stoploss_on_exchange", False
),
"trailing_stop": config.get("trailing_stop"),
"trailing_stop_positive": config.get("trailing_stop_positive"),
"trailing_stop_positive_offset": config.get("trailing_stop_positive_offset"),
"trailing_only_offset_is_reached": config.get("trailing_only_offset_is_reached"),
"unfilledtimeout": config.get("unfilledtimeout"),
"use_custom_stoploss": config.get("use_custom_stoploss"),
"order_types": config.get("order_types"),
"bot_name": config.get("bot_name", "freqtrade"),
"timeframe": config.get("timeframe"),
"timeframe_ms": timeframe_to_msecs(config["timeframe"]) if "timeframe" in config else 0,
"timeframe_min": (
timeframe_to_minutes(config["timeframe"]) if "timeframe" in config else 0
),
"exchange": config["exchange"]["name"],
"strategy": config["strategy"],
"force_entry_enable": config.get("force_entry_enable", False),
"exit_pricing": config.get("exit_pricing", {}),
"entry_pricing": config.get("entry_pricing", {}),
"state": str(botstate),
"runmode": config["runmode"].value,
"position_adjustment_enable": config.get("position_adjustment_enable", False),
"max_entry_position_adjustment": (
config.get("max_entry_position_adjustment", -1)
if config.get("max_entry_position_adjustment") != float("inf")
else -1
),
}
return val
def _rpc_trade_status(self, trade_ids: Optional[List[int]] = None) -> List[Dict[str, Any]]:
"""
Below follows the RPC backend it is prefixed with rpc_ to raise awareness that it is
a remotely exposed function
"""
# Fetch open trades
if trade_ids:
trades: Sequence[Trade] = Trade.get_trades(trade_filter=Trade.id.in_(trade_ids)).all()
else:
trades = Trade.get_open_trades()
if not trades:
raise RPCException("no active trade")
else:
results = []
for trade in trades:
current_profit_fiat: Optional[float] = None
total_profit_fiat: Optional[float] = None
# prepare open orders details
oo_details: Optional[str] = ""
oo_details_lst = [
f"({oo.order_type} {oo.side} rem={oo.safe_remaining:.8f})"
for oo in trade.open_orders
if oo.ft_order_side not in ["stoploss"]
]
oo_details = ", ".join(oo_details_lst)
total_profit_abs = 0.0
total_profit_ratio: Optional[float] = None
# calculate profit and send message to user
if trade.is_open:
try:
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, side="exit", is_short=trade.is_short, refresh=False
)
except (ExchangeError, PricingError):
current_rate = NAN
if len(trade.select_filled_orders(trade.entry_side)) > 0:
current_profit = current_profit_abs = current_profit_fiat = NAN
if not isnan(current_rate):
prof = trade.calculate_profit(current_rate)
current_profit = prof.profit_ratio
current_profit_abs = prof.profit_abs
total_profit_abs = prof.total_profit
total_profit_ratio = prof.total_profit_ratio
else:
current_profit = current_profit_abs = current_profit_fiat = 0.0
else:
# Closed trade ...
current_rate = trade.close_rate
current_profit = trade.close_profit or 0.0
current_profit_abs = trade.close_profit_abs or 0.0
# Calculate fiat profit
if not isnan(current_profit_abs) and self._fiat_converter:
current_profit_fiat = self._fiat_converter.convert_amount(
current_profit_abs,
self._freqtrade.config["stake_currency"],
self._freqtrade.config["fiat_display_currency"],
)
total_profit_fiat = self._fiat_converter.convert_amount(
total_profit_abs,
self._freqtrade.config["stake_currency"],
self._freqtrade.config["fiat_display_currency"],
)
# Calculate guaranteed profit (in case of trailing stop)
stop_entry = trade.calculate_profit(trade.stop_loss)
stoploss_entry_dist = stop_entry.profit_abs
stoploss_entry_dist_ratio = stop_entry.profit_ratio
# calculate distance to stoploss
stoploss_current_dist = trade.stop_loss - current_rate
stoploss_current_dist_ratio = stoploss_current_dist / current_rate
trade_dict = trade.to_json()
trade_dict.update(
dict(
close_profit=trade.close_profit if not trade.is_open else None,
current_rate=current_rate,
profit_ratio=current_profit,
profit_pct=round(current_profit * 100, 2),
profit_abs=current_profit_abs,
profit_fiat=current_profit_fiat,
total_profit_abs=total_profit_abs,
total_profit_fiat=total_profit_fiat,
total_profit_ratio=total_profit_ratio,
stoploss_current_dist=stoploss_current_dist,
stoploss_current_dist_ratio=round(stoploss_current_dist_ratio, 8),
stoploss_current_dist_pct=round(stoploss_current_dist_ratio * 100, 2),
stoploss_entry_dist=stoploss_entry_dist,
stoploss_entry_dist_ratio=round(stoploss_entry_dist_ratio, 8),
open_orders=oo_details,
)
)
results.append(trade_dict)
return results
def _rpc_status_table(
self, stake_currency: str, fiat_display_currency: str
) -> Tuple[List, List, float]:
trades: List[Trade] = Trade.get_open_trades()
nonspot = self._config.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT
if not trades:
raise RPCException("no active trade")
else:
trades_list = []
fiat_profit_sum = NAN
for trade in trades:
# calculate profit and send message to user
try:
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, side="exit", is_short=trade.is_short, refresh=False
)
except (PricingError, ExchangeError):
current_rate = NAN
trade_profit = NAN
profit_str = f"{NAN:.2%}"
else:
if trade.nr_of_successful_entries > 0:
profit = trade.calculate_profit(current_rate)
trade_profit = profit.profit_abs
profit_str = f"{profit.profit_ratio:.2%}"
else:
trade_profit = 0.0
profit_str = f"{0.0:.2f}"
direction_str = ("S" if trade.is_short else "L") if nonspot else ""
if self._fiat_converter:
fiat_profit = self._fiat_converter.convert_amount(
trade_profit, stake_currency, fiat_display_currency
)
if not isnan(fiat_profit):
profit_str += f" ({fiat_profit:.2f})"
fiat_profit_sum = (
fiat_profit if isnan(fiat_profit_sum) else fiat_profit_sum + fiat_profit
)
else:
profit_str += f" ({trade_profit:.2f})"
fiat_profit_sum = (
trade_profit if isnan(fiat_profit_sum) else fiat_profit_sum + trade_profit
)
active_attempt_side_symbols = [
"*" if (oo and oo.ft_order_side == trade.entry_side) else "**"
for oo in trade.open_orders
]
# example: '*.**.**' trying to enter, exit and exit with 3 different orders
active_attempt_side_symbols_str = ".".join(active_attempt_side_symbols)
detail_trade = [
f"{trade.id} {direction_str}",
trade.pair + active_attempt_side_symbols_str,
shorten_date(dt_humanize_delta(trade.open_date_utc)),
profit_str,
]
if self._config.get("position_adjustment_enable", False):
max_entry_str = ""
if self._config.get("max_entry_position_adjustment", -1) > 0:
max_entry_str = f"/{self._config['max_entry_position_adjustment'] + 1}"
filled_entries = trade.nr_of_successful_entries
detail_trade.append(f"{filled_entries}{max_entry_str}")
trades_list.append(detail_trade)
profitcol = "Profit"
if self._fiat_converter:
profitcol += " (" + fiat_display_currency + ")"
else:
profitcol += " (" + stake_currency + ")"
columns = ["ID L/S" if nonspot else "ID", "Pair", "Since", profitcol]
if self._config.get("position_adjustment_enable", False):
columns.append("# Entries")
return trades_list, columns, fiat_profit_sum
def _rpc_timeunit_profit(
self,
timescale: int,
stake_currency: str,
fiat_display_currency: str,
timeunit: str = "days",
) -> Dict[str, Any]:
"""
:param timeunit: Valid entries are 'days', 'weeks', 'months'
"""
start_date = datetime.now(timezone.utc).date()
if timeunit == "weeks":
# weekly
start_date = start_date - timedelta(days=start_date.weekday()) # Monday
if timeunit == "months":
start_date = start_date.replace(day=1)
def time_offset(step: int):
if timeunit == "months":
return relativedelta(months=step)
return timedelta(**{timeunit: step})
if not (isinstance(timescale, int) and timescale > 0):
raise RPCException("timescale must be an integer greater than 0")
profit_units: Dict[date, Dict] = {}
daily_stake = self._freqtrade.wallets.get_total_stake_amount()
for day in range(0, timescale):
profitday = start_date - time_offset(day)
# Only query for necessary columns for performance reasons.
trades = Trade.session.execute(
select(Trade.close_profit_abs)
.filter(
Trade.is_open.is_(False),
Trade.close_date >= profitday,
Trade.close_date < (profitday + time_offset(1)),
)
.order_by(Trade.close_date)
).all()
curdayprofit = sum(
trade.close_profit_abs for trade in trades if trade.close_profit_abs is not None
)
# Calculate this periods starting balance
daily_stake = daily_stake - curdayprofit
profit_units[profitday] = {
"amount": curdayprofit,
"daily_stake": daily_stake,
"rel_profit": round(curdayprofit / daily_stake, 8) if daily_stake > 0 else 0,
"trades": len(trades),
}
data = [
{
"date": key,
"abs_profit": value["amount"],
"starting_balance": value["daily_stake"],
"rel_profit": value["rel_profit"],
"fiat_value": (
self._fiat_converter.convert_amount(
value["amount"], stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
),
"trade_count": value["trades"],
}
for key, value in profit_units.items()
]
return {
"stake_currency": stake_currency,
"fiat_display_currency": fiat_display_currency,
"data": data,
}
def _rpc_trade_history(self, limit: int, offset: int = 0, order_by_id: bool = False) -> Dict:
"""Returns the X last trades"""
order_by: Any = Trade.id if order_by_id else Trade.close_date.desc()
if limit:
trades = Trade.session.scalars(
Trade.get_trades_query([Trade.is_open.is_(False)])
.order_by(order_by)
.limit(limit)
.offset(offset)
)
else:
trades = Trade.session.scalars(
Trade.get_trades_query([Trade.is_open.is_(False)]).order_by(Trade.close_date.desc())
)
output = [trade.to_json() for trade in trades]
total_trades = Trade.session.scalar(
select(func.count(Trade.id)).filter(Trade.is_open.is_(False))
)
return {
"trades": output,
"trades_count": len(output),
"offset": offset,
"total_trades": total_trades,
}
def _rpc_stats(self) -> Dict[str, Any]:
"""
Generate generic stats for trades in database
"""
def trade_win_loss(trade):
if trade.close_profit > 0:
return "wins"
elif trade.close_profit < 0:
return "losses"
else:
return "draws"
trades = Trade.get_trades([Trade.is_open.is_(False)], include_orders=False)
# Duration
dur: Dict[str, List[float]] = {"wins": [], "draws": [], "losses": []}
# Exit reason
exit_reasons = {}
for trade in trades:
if trade.exit_reason not in exit_reasons:
exit_reasons[trade.exit_reason] = {"wins": 0, "losses": 0, "draws": 0}
exit_reasons[trade.exit_reason][trade_win_loss(trade)] += 1
if trade.close_date is not None and trade.open_date is not None:
trade_dur = (trade.close_date - trade.open_date).total_seconds()
dur[trade_win_loss(trade)].append(trade_dur)
wins_dur = sum(dur["wins"]) / len(dur["wins"]) if len(dur["wins"]) > 0 else None
draws_dur = sum(dur["draws"]) / len(dur["draws"]) if len(dur["draws"]) > 0 else None
losses_dur = sum(dur["losses"]) / len(dur["losses"]) if len(dur["losses"]) > 0 else None
durations = {"wins": wins_dur, "draws": draws_dur, "losses": losses_dur}
return {"exit_reasons": exit_reasons, "durations": durations}
def _rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str, start_date: Optional[datetime] = None
) -> Dict[str, Any]:
"""Returns cumulative profit statistics"""
start_date = datetime.fromtimestamp(0) if start_date is None else start_date
trade_filter = (
Trade.is_open.is_(False) & (Trade.close_date >= start_date)
) | Trade.is_open.is_(True)
trades: Sequence[Trade] = Trade.session.scalars(
Trade.get_trades_query(trade_filter, include_orders=False).order_by(Trade.id)
).all()
profit_all_coin = []
profit_all_ratio = []
profit_closed_coin = []
profit_closed_ratio = []
durations = []
winning_trades = 0
losing_trades = 0
winning_profit = 0.0
losing_profit = 0.0
for trade in trades:
current_rate: float = 0.0
if trade.close_date:
durations.append((trade.close_date - trade.open_date).total_seconds())
if not trade.is_open:
profit_ratio = trade.close_profit or 0.0
profit_abs = trade.close_profit_abs or 0.0
profit_closed_coin.append(profit_abs)
profit_closed_ratio.append(profit_ratio)
if profit_ratio >= 0:
winning_trades += 1
winning_profit += profit_abs
else:
losing_trades += 1
losing_profit += profit_abs
else:
# Get current rate
if len(trade.select_filled_orders(trade.entry_side)) == 0:
# Skip trades with no filled orders
continue
try:
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, side="exit", is_short=trade.is_short, refresh=False
)
except (PricingError, ExchangeError):
current_rate = NAN
profit_ratio = NAN
profit_abs = NAN
else:
_profit = trade.calculate_profit(trade.close_rate or current_rate)
profit_ratio = _profit.profit_ratio
profit_abs = _profit.total_profit
profit_all_coin.append(profit_abs)
profit_all_ratio.append(profit_ratio)
closed_trade_count = len([t for t in trades if not t.is_open])
best_pair = Trade.get_best_pair(start_date)
trading_volume = Trade.get_trading_volume(start_date)
# Prepare data to display
profit_closed_coin_sum = round(sum(profit_closed_coin), 8)
profit_closed_ratio_mean = float(mean(profit_closed_ratio) if profit_closed_ratio else 0.0)
profit_closed_ratio_sum = sum(profit_closed_ratio) if profit_closed_ratio else 0.0
profit_closed_fiat = (
self._fiat_converter.convert_amount(
profit_closed_coin_sum, stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
)
profit_all_coin_sum = round(sum(profit_all_coin), 8)
profit_all_ratio_mean = float(mean(profit_all_ratio) if profit_all_ratio else 0.0)
# Doing the sum is not right - overall profit needs to be based on initial capital
profit_all_ratio_sum = sum(profit_all_ratio) if profit_all_ratio else 0.0
starting_balance = self._freqtrade.wallets.get_starting_balance()
profit_closed_ratio_fromstart = 0
profit_all_ratio_fromstart = 0
if starting_balance:
profit_closed_ratio_fromstart = profit_closed_coin_sum / starting_balance
profit_all_ratio_fromstart = profit_all_coin_sum / starting_balance
profit_factor = winning_profit / abs(losing_profit) if losing_profit else float("inf")
winrate = (winning_trades / closed_trade_count) if closed_trade_count > 0 else 0
trades_df = DataFrame(
[
{
"close_date": format_date(trade.close_date),
"close_date_dt": trade.close_date,
"profit_abs": trade.close_profit_abs,
}
for trade in trades
if not trade.is_open and trade.close_date
]
)
expectancy, expectancy_ratio = calculate_expectancy(trades_df)
drawdown = DrawDownResult()
if len(trades_df) > 0:
try:
drawdown = calculate_max_drawdown(
trades_df,
value_col="profit_abs",
date_col="close_date_dt",
starting_balance=starting_balance,
)
except ValueError:
# ValueError if no losing trade.
pass
profit_all_fiat = (
self._fiat_converter.convert_amount(
profit_all_coin_sum, stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
)
first_date = trades[0].open_date_utc if trades else None
last_date = trades[-1].open_date_utc if trades else None
num = float(len(durations) or 1)
bot_start = KeyValueStore.get_datetime_value(KeyStoreKeys.BOT_START_TIME)
return {
"profit_closed_coin": profit_closed_coin_sum,
"profit_closed_percent_mean": round(profit_closed_ratio_mean * 100, 2),
"profit_closed_ratio_mean": profit_closed_ratio_mean,
"profit_closed_percent_sum": round(profit_closed_ratio_sum * 100, 2),
"profit_closed_ratio_sum": profit_closed_ratio_sum,
"profit_closed_ratio": profit_closed_ratio_fromstart,
"profit_closed_percent": round(profit_closed_ratio_fromstart * 100, 2),
"profit_closed_fiat": profit_closed_fiat,
"profit_all_coin": profit_all_coin_sum,
"profit_all_percent_mean": round(profit_all_ratio_mean * 100, 2),
"profit_all_ratio_mean": profit_all_ratio_mean,
"profit_all_percent_sum": round(profit_all_ratio_sum * 100, 2),
"profit_all_ratio_sum": profit_all_ratio_sum,
"profit_all_ratio": profit_all_ratio_fromstart,
"profit_all_percent": round(profit_all_ratio_fromstart * 100, 2),
"profit_all_fiat": profit_all_fiat,
"trade_count": len(trades),
"closed_trade_count": closed_trade_count,
"first_trade_date": format_date(first_date),
"first_trade_humanized": dt_humanize_delta(first_date) if first_date else "",
"first_trade_timestamp": dt_ts_def(first_date, 0),
"latest_trade_date": format_date(last_date),
"latest_trade_humanized": dt_humanize_delta(last_date) if last_date else "",
"latest_trade_timestamp": dt_ts_def(last_date, 0),
"avg_duration": str(timedelta(seconds=sum(durations) / num)).split(".")[0],
"best_pair": best_pair[0] if best_pair else "",
"best_rate": round(best_pair[1] * 100, 2) if best_pair else 0, # Deprecated
"best_pair_profit_ratio": best_pair[1] if best_pair else 0,
"winning_trades": winning_trades,
"losing_trades": losing_trades,
"profit_factor": profit_factor,
"winrate": winrate,
"expectancy": expectancy,
"expectancy_ratio": expectancy_ratio,
"max_drawdown": drawdown.relative_account_drawdown,
"max_drawdown_abs": drawdown.drawdown_abs,
"max_drawdown_start": format_date(drawdown.high_date),
"max_drawdown_start_timestamp": dt_ts_def(drawdown.high_date),
"max_drawdown_end": format_date(drawdown.low_date),
"max_drawdown_end_timestamp": dt_ts_def(drawdown.low_date),
"drawdown_high": drawdown.high_value,
"drawdown_low": drawdown.low_value,
"trading_volume": trading_volume,
"bot_start_timestamp": dt_ts_def(bot_start, 0),
"bot_start_date": format_date(bot_start),
}
def __balance_get_est_stake(
self, coin: str, stake_currency: str, amount: float, balance: Wallet, tickers
) -> Tuple[float, float]:
est_stake = 0.0
est_bot_stake = 0.0
if coin == stake_currency:
est_stake = balance.total
if self._config.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT:
# in Futures, "total" includes the locked stake, and therefore all positions
est_stake = balance.free
est_bot_stake = amount
else:
pair = self._freqtrade.exchange.get_valid_pair_combination(coin, stake_currency)
rate: Optional[float] = tickers.get(pair, {}).get("last", None)
if rate:
if pair.startswith(stake_currency) and not pair.endswith(stake_currency):
rate = 1.0 / rate
est_stake = rate * balance.total
est_bot_stake = rate * amount
return est_stake, est_bot_stake
def _rpc_balance(self, stake_currency: str, fiat_display_currency: str) -> Dict:
"""Returns current account balance per crypto"""
currencies: List[Dict] = []
total = 0.0
total_bot = 0.0
try:
tickers: Tickers = self._freqtrade.exchange.get_tickers(cached=True)
except ExchangeError:
raise RPCException("Error getting current tickers.")
open_trades: List[Trade] = Trade.get_open_trades()
open_assets: Dict[str, Trade] = {t.safe_base_currency: t for t in open_trades}
self._freqtrade.wallets.update(require_update=False)
starting_capital = self._freqtrade.wallets.get_starting_balance()
starting_cap_fiat = (
self._fiat_converter.convert_amount(
starting_capital, stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
)
coin: str
balance: Wallet
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
if not balance.total:
continue
trade = open_assets.get(coin, None)
is_bot_managed = coin == stake_currency or trade is not None
trade_amount = trade.amount if trade else 0
if coin == stake_currency:
trade_amount = self._freqtrade.wallets.get_available_stake_amount()
try:
est_stake, est_stake_bot = self.__balance_get_est_stake(
coin, stake_currency, trade_amount, balance, tickers
)
except ValueError:
continue
total += est_stake
if is_bot_managed:
total_bot += est_stake_bot
currencies.append(
{
"currency": coin,
"free": balance.free,
"balance": balance.total,
"used": balance.used,
"bot_owned": trade_amount,
"est_stake": est_stake or 0,
"est_stake_bot": est_stake_bot if is_bot_managed else 0,
"stake": stake_currency,
"side": "long",
"leverage": 1,
"position": 0,
"is_bot_managed": is_bot_managed,
"is_position": False,
}
)
symbol: str
position: PositionWallet
for symbol, position in self._freqtrade.wallets.get_all_positions().items():
total += position.collateral
total_bot += position.collateral
currencies.append(
{
"currency": symbol,
"free": 0,
"balance": 0,
"used": 0,
"position": position.position,
"est_stake": position.collateral,
"est_stake_bot": position.collateral,
"stake": stake_currency,
"leverage": position.leverage,
"side": position.side,
"is_bot_managed": True,
"is_position": True,
}
)
value = (
self._fiat_converter.convert_amount(total, stake_currency, fiat_display_currency)
if self._fiat_converter
else 0
)
value_bot = (
self._fiat_converter.convert_amount(total_bot, stake_currency, fiat_display_currency)
if self._fiat_converter
else 0
)
trade_count = len(Trade.get_trades_proxy())
starting_capital_ratio = (total_bot / starting_capital) - 1 if starting_capital else 0.0
starting_cap_fiat_ratio = (value_bot / starting_cap_fiat) - 1 if starting_cap_fiat else 0.0
return {
"currencies": currencies,
"total": total,
"total_bot": total_bot,
"symbol": fiat_display_currency,
"value": value,
"value_bot": value_bot,
"stake": stake_currency,
"starting_capital": starting_capital,
"starting_capital_ratio": starting_capital_ratio,
"starting_capital_pct": round(starting_capital_ratio * 100, 2),
"starting_capital_fiat": starting_cap_fiat,
"starting_capital_fiat_ratio": starting_cap_fiat_ratio,
"starting_capital_fiat_pct": round(starting_cap_fiat_ratio * 100, 2),
"trade_count": trade_count,
"note": "Simulated balances" if self._freqtrade.config["dry_run"] else "",
}
def _rpc_start(self) -> Dict[str, str]:
"""Handler for start"""
if self._freqtrade.state == State.RUNNING:
return {"status": "already running"}
self._freqtrade.state = State.RUNNING
return {"status": "starting trader ..."}
def _rpc_stop(self) -> Dict[str, str]:
"""Handler for stop"""
if self._freqtrade.state == State.RUNNING:
self._freqtrade.state = State.STOPPED
return {"status": "stopping trader ..."}
return {"status": "already stopped"}
def _rpc_reload_config(self) -> Dict[str, str]:
"""Handler for reload_config."""
self._freqtrade.state = State.RELOAD_CONFIG
return {"status": "Reloading config ..."}
def _rpc_stopentry(self) -> Dict[str, str]:
"""
Handler to stop buying, but handle open trades gracefully.
"""
if self._freqtrade.state == State.RUNNING:
# Set 'max_open_trades' to 0
self._freqtrade.config["max_open_trades"] = 0
self._freqtrade.strategy.max_open_trades = 0
return {"status": "No more entries will occur from now. Run /reload_config to reset."}
def _rpc_reload_trade_from_exchange(self, trade_id: int) -> Dict[str, str]:
"""
Handler for reload_trade_from_exchange.
Reloads a trade from it's orders, should manual interaction have happened.
"""
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if not trade:
raise RPCException(f"Could not find trade with id {trade_id}.")
self._freqtrade.handle_onexchange_order(trade)
return {"status": "Reloaded from orders from exchange"}
def __exec_force_exit(
self, trade: Trade, ordertype: Optional[str], amount: Optional[float] = None
) -> bool:
# Check if there is there are open orders
trade_entry_cancelation_registry = []
for oo in trade.open_orders:
trade_entry_cancelation_res = {"order_id": oo.order_id, "cancel_state": False}
order = self._freqtrade.exchange.fetch_order(oo.order_id, trade.pair)
if order["side"] == trade.entry_side:
fully_canceled = self._freqtrade.handle_cancel_enter(
trade, order, oo, CANCEL_REASON["FORCE_EXIT"]
)
trade_entry_cancelation_res["cancel_state"] = fully_canceled
trade_entry_cancelation_registry.append(trade_entry_cancelation_res)
if order["side"] == trade.exit_side:
# Cancel order - so it is placed anew with a fresh price.
self._freqtrade.handle_cancel_exit(trade, order, oo, CANCEL_REASON["FORCE_EXIT"])
if all(tocr["cancel_state"] is False for tocr in trade_entry_cancelation_registry):
if trade.has_open_orders:
# Order cancellation failed, so we can't exit.
return False
# Get current rate and execute sell
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, side="exit", is_short=trade.is_short, refresh=True
)
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
order_type = ordertype or self._freqtrade.strategy.order_types.get(
"force_exit", self._freqtrade.strategy.order_types["exit"]
)
sub_amount: Optional[float] = None
if amount and amount < trade.amount:
# Partial exit ...
min_exit_stake = self._freqtrade.exchange.get_min_pair_stake_amount(
trade.pair, current_rate, trade.stop_loss_pct
)
remaining = (trade.amount - amount) * current_rate
if remaining < min_exit_stake:
raise RPCException(f"Remaining amount of {remaining} would be too small.")
sub_amount = amount
self._freqtrade.execute_trade_exit(
trade, current_rate, exit_check, ordertype=order_type, sub_trade_amt=sub_amount
)
return True
return False
def _rpc_force_exit(
self, trade_id: str, ordertype: Optional[str] = None, *, amount: Optional[float] = None
) -> Dict[str, str]:
"""
Handler for forceexit <id>.
Sells the given trade at current price
"""
if self._freqtrade.state != State.RUNNING:
raise RPCException("trader is not running")
with self._freqtrade._exit_lock:
if trade_id == "all":
# Execute exit for all open orders
for trade in Trade.get_open_trades():
self.__exec_force_exit(trade, ordertype)
Trade.commit()
self._freqtrade.wallets.update()
return {"result": "Created exit orders for all open trades."}
# Query for trade
trade = Trade.get_trades(
trade_filter=[
Trade.id == trade_id,
Trade.is_open.is_(True),
]
).first()
if not trade:
logger.warning("force_exit: Invalid argument received")
raise RPCException("invalid argument")
result = self.__exec_force_exit(trade, ordertype, amount)
Trade.commit()
self._freqtrade.wallets.update()
if not result:
raise RPCException("Failed to exit trade.")
return {"result": f"Created exit order for trade {trade_id}."}
def _force_entry_validations(self, pair: str, order_side: SignalDirection):
if not self._freqtrade.config.get("force_entry_enable", False):
raise RPCException("Force_entry not enabled.")
if self._freqtrade.state != State.RUNNING:
raise RPCException("trader is not running")
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
raise RPCException("Can't go short on Spot markets.")
if pair not in self._freqtrade.exchange.get_markets(tradable_only=True):
raise RPCException("Symbol does not exist or market is not active.")
# Check if pair quote currency equals to the stake currency.
stake_currency = self._freqtrade.config.get("stake_currency")
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
raise RPCException(
f"Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed."
)
def _rpc_force_entry(
self,
pair: str,
price: Optional[float],
*,
order_type: Optional[str] = None,
order_side: SignalDirection = SignalDirection.LONG,
stake_amount: Optional[float] = None,
enter_tag: Optional[str] = "force_entry",
leverage: Optional[float] = None,
) -> Optional[Trade]:
"""
Handler for forcebuy <asset> <price>
Buys a pair trade at the given or current price
"""
self._force_entry_validations(pair, order_side)
# check if valid pair
# check if pair already has an open pair
trade: Optional[Trade] = Trade.get_trades(
[Trade.is_open.is_(True), Trade.pair == pair]
).first()
is_short = order_side == SignalDirection.SHORT
if trade:
is_short = trade.is_short
if not self._freqtrade.strategy.position_adjustment_enable:
raise RPCException(f"position for {pair} already open - id: {trade.id}")
if trade.has_open_orders:
raise RPCException(
f"position for {pair} already open - id: {trade.id} "
f"and has open order {','.join(trade.open_orders_ids)}"
)
else:
if Trade.get_open_trade_count() >= self._config["max_open_trades"]:
raise RPCException("Maximum number of trades is reached.")
if not stake_amount:
# gen stake amount
stake_amount = self._freqtrade.wallets.get_trade_stake_amount(
pair, self._config["max_open_trades"]
)
# execute buy
if not order_type:
order_type = self._freqtrade.strategy.order_types.get(
"force_entry", self._freqtrade.strategy.order_types["entry"]
)
with self._freqtrade._exit_lock:
if self._freqtrade.execute_entry(
pair,
stake_amount,
price,
ordertype=order_type,
trade=trade,
is_short=is_short,
enter_tag=enter_tag,
leverage_=leverage,
mode="pos_adjust" if trade else "initial",
):
Trade.commit()
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
return trade
else:
raise RPCException(f"Failed to enter position for {pair}.")
def _rpc_cancel_open_order(self, trade_id: int):
if self._freqtrade.state != State.RUNNING:
raise RPCException("trader is not running")
with self._freqtrade._exit_lock:
# Query for trade
trade = Trade.get_trades(
trade_filter=[
Trade.id == trade_id,
Trade.is_open.is_(True),
]
).first()
if not trade:
logger.warning("cancel_open_order: Invalid trade_id received.")
raise RPCException("Invalid trade_id.")
if not trade.has_open_orders:
logger.warning("cancel_open_order: No open order for trade_id.")
raise RPCException("No open order for trade_id.")
for open_order in trade.open_orders:
try:
order = self._freqtrade.exchange.fetch_order(open_order.order_id, trade.pair)
except ExchangeError as e:
logger.info(f"Cannot query order for {trade} due to {e}.", exc_info=True)
raise RPCException("Order not found.")
self._freqtrade.handle_cancel_order(
order, open_order, trade, CANCEL_REASON["USER_CANCEL"]
)
Trade.commit()
def _rpc_delete(self, trade_id: int) -> Dict[str, Union[str, int]]:
"""
Handler for delete <id>.
Delete the given trade and close eventually existing open orders.
"""
with self._freqtrade._exit_lock:
c_count = 0
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if not trade:
logger.warning("delete trade: Invalid argument received")
raise RPCException("invalid argument")
# Try cancelling regular order if that exists
for open_order in trade.open_orders:
try:
self._freqtrade.exchange.cancel_order(open_order.order_id, trade.pair)
c_count += 1
except ExchangeError:
pass
# cancel stoploss on exchange orders ...
if (
self._freqtrade.strategy.order_types.get("stoploss_on_exchange")
and trade.has_open_sl_orders
):
for oslo in trade.open_sl_orders:
try:
self._freqtrade.exchange.cancel_stoploss_order(oslo.order_id, trade.pair)
c_count += 1
except ExchangeError:
pass
trade.delete()
self._freqtrade.wallets.update()
return {
"result": "success",
"trade_id": trade_id,
"result_msg": f"Deleted trade {trade_id}. Closed {c_count} open orders.",
"cancel_order_count": c_count,
}
def _rpc_list_custom_data(self, trade_id: int, key: Optional[str]) -> List[Dict[str, Any]]:
# Query for trade
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if trade is None:
return []
# Query custom_data
custom_data = []
if key:
data = trade.get_custom_data(key=key)
if data:
custom_data = [data]
else:
custom_data = trade.get_all_custom_data()
return [
{
"id": data_entry.id,
"ft_trade_id": data_entry.ft_trade_id,
"cd_key": data_entry.cd_key,
"cd_type": data_entry.cd_type,
"cd_value": data_entry.cd_value,
"created_at": data_entry.created_at,
"updated_at": data_entry.updated_at,
}
for data_entry in custom_data
]
def _rpc_performance(self) -> List[Dict[str, Any]]:
"""
Handler for performance.
Shows a performance statistic from finished trades
"""
pair_rates = Trade.get_overall_performance()
return pair_rates
def _rpc_enter_tag_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for buy tag performance.
Shows a performance statistic from finished trades
"""
return Trade.get_enter_tag_performance(pair)
def _rpc_exit_reason_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for exit reason performance.
Shows a performance statistic from finished trades
"""
return Trade.get_exit_reason_performance(pair)
def _rpc_mix_tag_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for mix tag (enter_tag + exit_reason) performance.
Shows a performance statistic from finished trades
"""
mix_tags = Trade.get_mix_tag_performance(pair)
return mix_tags
def _rpc_count(self) -> Dict[str, float]:
"""Returns the number of trades running"""
if self._freqtrade.state != State.RUNNING:
raise RPCException("trader is not running")
trades = Trade.get_open_trades()
return {
"current": len(trades),
"max": (
int(self._freqtrade.config["max_open_trades"])
if self._freqtrade.config["max_open_trades"] != float("inf")
else -1
),
"total_stake": sum((trade.open_rate * trade.amount) for trade in trades),
}
def _rpc_locks(self) -> Dict[str, Any]:
"""Returns the current locks"""
locks = PairLocks.get_pair_locks(None)
return {"lock_count": len(locks), "locks": [lock.to_json() for lock in locks]}
def _rpc_delete_lock(
self, lockid: Optional[int] = None, pair: Optional[str] = None
) -> Dict[str, Any]:
"""Delete specific lock(s)"""
locks: Sequence[PairLock] = []
if pair:
locks = PairLocks.get_pair_locks(pair)
if lockid:
locks = PairLock.session.scalars(select(PairLock).filter(PairLock.id == lockid)).all()
for lock in locks:
lock.active = False
lock.lock_end_time = datetime.now(timezone.utc)
Trade.commit()
return self._rpc_locks()
def _rpc_add_lock(
self, pair: str, until: datetime, reason: Optional[str], side: str
) -> PairLock:
lock = PairLocks.lock_pair(
pair=pair,
until=until,
reason=reason,
side=side,
)
return lock
def _rpc_whitelist(self) -> Dict:
"""Returns the currently active whitelist"""
res = {
"method": self._freqtrade.pairlists.name_list,
"length": len(self._freqtrade.active_pair_whitelist),
"whitelist": self._freqtrade.active_pair_whitelist,
}
return res
def _rpc_blacklist_delete(self, delete: List[str]) -> Dict:
"""Removes pairs from currently active blacklist"""
errors = {}
for pair in delete:
if pair in self._freqtrade.pairlists.blacklist:
self._freqtrade.pairlists.blacklist.remove(pair)
else:
errors[pair] = {"error_msg": f"Pair {pair} is not in the current blacklist."}
resp = self._rpc_blacklist()
resp["errors"] = errors
return resp
def _rpc_blacklist(self, add: Optional[List[str]] = None) -> Dict:
"""Returns the currently active blacklist"""
errors = {}
if add:
for pair in add:
if pair not in self._freqtrade.pairlists.blacklist:
try:
expand_pairlist([pair], self._freqtrade.exchange.get_markets().keys())
self._freqtrade.pairlists.blacklist.append(pair)
except ValueError:
errors[pair] = {"error_msg": f"Pair {pair} is not a valid wildcard."}
else:
errors[pair] = {"error_msg": f"Pair {pair} already in pairlist."}
res = {
"method": self._freqtrade.pairlists.name_list,
"length": len(self._freqtrade.pairlists.blacklist),
"blacklist": self._freqtrade.pairlists.blacklist,
"blacklist_expanded": self._freqtrade.pairlists.expanded_blacklist,
"errors": errors,
}
return res
@staticmethod
def _rpc_get_logs(limit: Optional[int]) -> Dict[str, Any]:
"""Returns the last X logs"""
if limit:
buffer = bufferHandler.buffer[-limit:]
else:
buffer = bufferHandler.buffer
records = [
[
format_date(datetime.fromtimestamp(r.created)),
r.created * 1000,
r.name,
r.levelname,
r.message + ("\n" + r.exc_text if r.exc_text else ""),
]
for r in buffer
]
# Log format:
# [logtime-formatted, logepoch, logger-name, loglevel, message \n + exception]
# e.g. ["2020-08-27 11:35:01", 1598520901097.9397,
# "freqtrade.worker", "INFO", "Starting worker develop"]
return {"log_count": len(records), "logs": records}
def _rpc_edge(self) -> List[Dict[str, Any]]:
"""Returns information related to Edge"""
if not self._freqtrade.edge:
raise RPCException("Edge is not enabled.")
return self._freqtrade.edge.accepted_pairs()
@staticmethod
def _convert_dataframe_to_dict(
strategy: str,
pair: str,
timeframe: str,
dataframe: DataFrame,
last_analyzed: datetime,
selected_cols: Optional[List[str]],
) -> Dict[str, Any]:
has_content = len(dataframe) != 0
dataframe_columns = list(dataframe.columns)
signals = {
"enter_long": 0,
"exit_long": 0,
"enter_short": 0,
"exit_short": 0,
}
if has_content:
if selected_cols is not None:
# Ensure OHLCV columns are always present
cols_set = set(DEFAULT_DATAFRAME_COLUMNS + list(signals.keys()) + selected_cols)
df_cols = [col for col in dataframe_columns if col in cols_set]
dataframe = dataframe.loc[:, df_cols]
dataframe.loc[:, "__date_ts"] = dataframe.loc[:, "date"].astype(int64) // 1000 // 1000
# Move signal close to separate column when signal for easy plotting
for sig_type in signals.keys():
if sig_type in dataframe.columns:
mask = dataframe[sig_type] == 1
signals[sig_type] = int(mask.sum())
dataframe.loc[mask, f"_{sig_type}_signal_close"] = dataframe.loc[mask, "close"]
# band-aid until this is fixed:
# https://github.com/pandas-dev/pandas/issues/45836
datetime_types = ["datetime", "datetime64", "datetime64[ns, UTC]"]
date_columns = dataframe.select_dtypes(include=datetime_types)
for date_column in date_columns:
# replace NaT with `None`
dataframe[date_column] = dataframe[date_column].astype(object).replace({NaT: None})
dataframe = dataframe.replace({inf: None, -inf: None, NAN: None})
res = {
"pair": pair,
"timeframe": timeframe,
"timeframe_ms": timeframe_to_msecs(timeframe),
"strategy": strategy,
"all_columns": dataframe_columns,
"columns": list(dataframe.columns),
"data": dataframe.values.tolist(),
"length": len(dataframe),
"buy_signals": signals["enter_long"], # Deprecated
"sell_signals": signals["exit_long"], # Deprecated
"enter_long_signals": signals["enter_long"],
"exit_long_signals": signals["exit_long"],
"enter_short_signals": signals["enter_short"],
"exit_short_signals": signals["exit_short"],
"last_analyzed": last_analyzed,
"last_analyzed_ts": int(last_analyzed.timestamp()),
"data_start": "",
"data_start_ts": 0,
"data_stop": "",
"data_stop_ts": 0,
}
if has_content:
res.update(
{
"data_start": str(dataframe.iloc[0]["date"]),
"data_start_ts": int(dataframe.iloc[0]["__date_ts"]),
"data_stop": str(dataframe.iloc[-1]["date"]),
"data_stop_ts": int(dataframe.iloc[-1]["__date_ts"]),
}
)
return res
def _rpc_analysed_dataframe(
self, pair: str, timeframe: str, limit: Optional[int], selected_cols: Optional[List[str]]
) -> Dict[str, Any]:
"""Analyzed dataframe in Dict form"""
_data, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
return RPC._convert_dataframe_to_dict(
self._freqtrade.config["strategy"], pair, timeframe, _data, last_analyzed, selected_cols
)
def __rpc_analysed_dataframe_raw(
self, pair: str, timeframe: str, limit: Optional[int]
) -> Tuple[DataFrame, datetime]:
"""
Get the dataframe and last analyze from the dataprovider
:param pair: The pair to get
:param timeframe: The timeframe of data to get
:param limit: The amount of candles in the dataframe
"""
_data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe(pair, timeframe)
_data = _data.copy()
if limit:
_data = _data.iloc[-limit:]
return _data, last_analyzed
def _ws_all_analysed_dataframes(
self, pairlist: List[str], limit: Optional[int]
) -> Generator[Dict[str, Any], None, None]:
"""
Get the analysed dataframes of each pair in the pairlist.
If specified, only return the most recent `limit` candles for
each dataframe.
:param pairlist: A list of pairs to get
:param limit: If an integer, limits the size of dataframe
If a list of string date times, only returns those candles
:returns: A generator of dictionaries with the key, dataframe, and last analyzed timestamp
"""
timeframe = self._freqtrade.config["timeframe"]
candle_type = self._freqtrade.config.get("candle_type_def", CandleType.SPOT)
for pair in pairlist:
dataframe, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
yield {"key": (pair, timeframe, candle_type), "df": dataframe, "la": last_analyzed}
def _ws_request_analyzed_df(self, limit: Optional[int] = None, pair: Optional[str] = None):
"""Historical Analyzed Dataframes for WebSocket"""
pairlist = [pair] if pair else self._freqtrade.active_pair_whitelist
return self._ws_all_analysed_dataframes(pairlist, limit)
def _ws_request_whitelist(self):
"""Whitelist data for WebSocket"""
return self._freqtrade.active_pair_whitelist
@staticmethod
def _rpc_analysed_history_full(
config: Config, pair: str, timeframe: str, exchange, selected_cols: Optional[List[str]]
) -> Dict[str, Any]:
timerange_parsed = TimeRange.parse_timerange(config.get("timerange"))
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.resolvers.strategy_resolver import StrategyResolver
strategy = StrategyResolver.load_strategy(config)
startup_candles = strategy.startup_candle_count
_data = load_data(
datadir=config["datadir"],
pairs=[pair],
timeframe=timeframe,
timerange=timerange_parsed,
data_format=config["dataformat_ohlcv"],
candle_type=config.get("candle_type_def", CandleType.SPOT),
startup_candles=startup_candles,
)
if pair not in _data:
raise RPCException(
f"No data for {pair}, {timeframe} in {config.get('timerange')} found."
)
strategy.dp = DataProvider(config, exchange=exchange, pairlists=None)
strategy.ft_bot_start()
df_analyzed = strategy.analyze_ticker(_data[pair], {"pair": pair})
df_analyzed = trim_dataframe(df_analyzed, timerange_parsed, startup_candles=startup_candles)
return RPC._convert_dataframe_to_dict(
strategy.get_strategy_name(),
pair,
timeframe,
df_analyzed.copy(),
dt_now(),
selected_cols,
)
def _rpc_plot_config(self) -> Dict[str, Any]:
if (
self._freqtrade.strategy.plot_config
and "subplots" not in self._freqtrade.strategy.plot_config
):
self._freqtrade.strategy.plot_config["subplots"] = {}
return self._freqtrade.strategy.plot_config
@staticmethod
def _rpc_plot_config_with_strategy(config: Config) -> Dict[str, Any]:
from freqtrade.resolvers.strategy_resolver import StrategyResolver
strategy = StrategyResolver.load_strategy(config)
# Manually load hyperparameters, as we don't call the bot-start callback.
strategy.ft_load_hyper_params(False)
if strategy.plot_config and "subplots" not in strategy.plot_config:
strategy.plot_config["subplots"] = {}
return strategy.plot_config
@staticmethod
def _rpc_sysinfo() -> Dict[str, Any]:
return {
"cpu_pct": psutil.cpu_percent(interval=1, percpu=True),
"ram_pct": psutil.virtual_memory().percent,
}
def health(self) -> Dict[str, Optional[Union[str, int]]]:
last_p = self._freqtrade.last_process
res: Dict[str, Union[None, str, int]] = {
"last_process": None,
"last_process_loc": None,
"last_process_ts": None,
"bot_start": None,
"bot_start_loc": None,
"bot_start_ts": None,
"bot_startup": None,
"bot_startup_loc": None,
"bot_startup_ts": None,
}
if last_p is not None:
res.update(
{
"last_process": str(last_p),
"last_process_loc": format_date(last_p.astimezone(tzlocal())),
"last_process_ts": int(last_p.timestamp()),
}
)
if bot_start := KeyValueStore.get_datetime_value(KeyStoreKeys.BOT_START_TIME):
res.update(
{
"bot_start": str(bot_start),
"bot_start_loc": format_date(bot_start.astimezone(tzlocal())),
"bot_start_ts": int(bot_start.timestamp()),
}
)
if bot_startup := KeyValueStore.get_datetime_value(KeyStoreKeys.STARTUP_TIME):
res.update(
{
"bot_startup": str(bot_startup),
"bot_startup_loc": format_date(bot_startup.astimezone(tzlocal())),
"bot_startup_ts": int(bot_startup.timestamp()),
}
)
return res
def _update_market_direction(self, direction: MarketDirection) -> None:
self._freqtrade.strategy.market_direction = direction
def _get_market_direction(self) -> MarketDirection:
return self._freqtrade.strategy.market_direction