freqtrade_origin/freqtrade/data/converter/converter.py
2024-05-13 07:10:25 +02:00

303 lines
10 KiB
Python

"""
Functions to convert data from one format to another
"""
import logging
from typing import Dict
import numpy as np
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, Config
from freqtrade.enums import CandleType, TradingMode
logger = logging.getLogger(__name__)
def ohlcv_to_dataframe(
ohlcv: list,
timeframe: str,
pair: str,
*,
fill_missing: bool = True,
drop_incomplete: bool = True,
) -> DataFrame:
"""
Converts a list with candle (OHLCV) data (in format returned by ccxt.fetch_ohlcv)
to a Dataframe
:param ohlcv: list with candle (OHLCV) data, as returned by exchange.async_get_candle_history
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
logger.debug(f"Converting candle (OHLCV) data to dataframe for pair {pair}.")
cols = DEFAULT_DATAFRAME_COLUMNS
df = DataFrame(ohlcv, columns=cols)
df["date"] = to_datetime(df["date"], unit="ms", utc=True)
# Some exchanges return int values for Volume and even for OHLC.
# Convert them since TA-LIB indicators used in the strategy assume floats
# and fail with exception...
df = df.astype(
dtype={
"open": "float",
"high": "float",
"low": "float",
"close": "float",
"volume": "float",
}
)
return clean_ohlcv_dataframe(
df, timeframe, pair, fill_missing=fill_missing, drop_incomplete=drop_incomplete
)
def clean_ohlcv_dataframe(
data: DataFrame, timeframe: str, pair: str, *, fill_missing: bool, drop_incomplete: bool
) -> DataFrame:
"""
Cleanse a OHLCV dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing candle (OHLCV) data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks
data = data.groupby(by="date", as_index=False, sort=True).agg(
{
"open": "first",
"high": "max",
"low": "min",
"close": "last",
"volume": "max",
}
)
# eliminate partial candle
if drop_incomplete:
data.drop(data.tail(1).index, inplace=True)
logger.debug("Dropping last candle")
if fill_missing:
return ohlcv_fill_up_missing_data(data, timeframe, pair)
else:
return data
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
"""
Fills up missing data with 0 volume rows,
using the previous close as price for "open", "high", "low" and "close", volume is set to 0
"""
from freqtrade.exchange import timeframe_to_resample_freq
ohlcv_dict = {"open": "first", "high": "max", "low": "min", "close": "last", "volume": "sum"}
resample_interval = timeframe_to_resample_freq(timeframe)
# Resample to create "NAN" values
df = dataframe.resample(resample_interval, on="date").agg(ohlcv_dict)
# Forwardfill close for missing columns
df["close"] = df["close"].ffill()
# Use close for "open, high, low"
df.loc[:, ["open", "high", "low"]] = df[["open", "high", "low"]].fillna(
value={
"open": df["close"],
"high": df["close"],
"low": df["close"],
}
)
df.reset_index(inplace=True)
len_before = len(dataframe)
len_after = len(df)
pct_missing = (len_after - len_before) / len_before if len_before > 0 else 0
if len_before != len_after:
message = (
f"Missing data fillup for {pair}, {timeframe}: "
f"before: {len_before} - after: {len_after} - {pct_missing:.2%}"
)
if pct_missing > 0.01:
logger.info(message)
else:
# Don't be verbose if only a small amount is missing
logger.debug(message)
return df
def trim_dataframe(
df: DataFrame, timerange, *, df_date_col: str = "date", startup_candles: int = 0
) -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param df_date_col: Column in the dataframe to use as Date column
:param startup_candles: When not 0, is used instead the timerange start date
:return: trimmed dataframe
"""
if startup_candles:
# Trim candles instead of timeframe in case of given startup_candle count
df = df.iloc[startup_candles:, :]
else:
if timerange.starttype == "date":
df = df.loc[df[df_date_col] >= timerange.startdt, :]
if timerange.stoptype == "date":
df = df.loc[df[df_date_col] <= timerange.stopdt, :]
return df
def trim_dataframes(
preprocessed: Dict[str, DataFrame], timerange, startup_candles: int
) -> Dict[str, DataFrame]:
"""
Trim startup period from analyzed dataframes
:param preprocessed: Dict of pair: dataframe
:param timerange: timerange (use start and end date if available)
:param startup_candles: Startup-candles that should be removed
:return: Dict of trimmed dataframes
"""
processed: Dict[str, DataFrame] = {}
for pair, df in preprocessed.items():
trimed_df = trim_dataframe(df, timerange, startup_candles=startup_candles)
if not trimed_df.empty:
processed[pair] = trimed_df
else:
logger.warning(
f"{pair} has no data left after adjusting for startup candles, skipping."
)
return processed
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
"""
TODO: This should get a dedicated test
Gets order book list, returns dataframe with below format per suggested by creslin
-------------------------------------------------------------------
b_sum b_size bids asks a_size a_sum
-------------------------------------------------------------------
"""
cols = ["bids", "b_size"]
bids_frame = DataFrame(bids, columns=cols)
# add cumulative sum column
bids_frame["b_sum"] = bids_frame["b_size"].cumsum()
cols2 = ["asks", "a_size"]
asks_frame = DataFrame(asks, columns=cols2)
# add cumulative sum column
asks_frame["a_sum"] = asks_frame["a_size"].cumsum()
frame = pd.concat(
[
bids_frame["b_sum"],
bids_frame["b_size"],
bids_frame["bids"],
asks_frame["asks"],
asks_frame["a_size"],
asks_frame["a_sum"],
],
axis=1,
keys=["b_sum", "b_size", "bids", "asks", "a_size", "a_sum"],
)
# logger.info('order book %s', frame )
return frame
def convert_ohlcv_format(
config: Config,
convert_from: str,
convert_to: str,
erase: bool,
):
"""
Convert OHLCV from one format to another
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase source data (does not apply if source and target format are identical)
"""
from freqtrade.data.history import get_datahandler
src = get_datahandler(config["datadir"], convert_from)
trg = get_datahandler(config["datadir"], convert_to)
timeframes = config.get("timeframes", [config.get("timeframe")])
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
candle_types = [
CandleType.from_string(ct)
for ct in config.get("candle_types", [c.value for c in CandleType])
]
logger.info(candle_types)
paircombs = src.ohlcv_get_available_data(config["datadir"], TradingMode.SPOT)
paircombs.extend(src.ohlcv_get_available_data(config["datadir"], TradingMode.FUTURES))
if "pairs" in config:
# Filter pairs
paircombs = [comb for comb in paircombs if comb[0] in config["pairs"]]
if "timeframes" in config:
paircombs = [comb for comb in paircombs if comb[1] in config["timeframes"]]
paircombs = [comb for comb in paircombs if comb[2] in candle_types]
paircombs = sorted(paircombs, key=lambda x: (x[0], x[1], x[2].value))
formatted_paircombs = "\n".join(
[f"{pair}, {timeframe}, {candle_type}" for pair, timeframe, candle_type in paircombs]
)
logger.info(
f"Converting candle (OHLCV) data for the following pair combinations:\n"
f"{formatted_paircombs}"
)
for pair, timeframe, candle_type in paircombs:
data = src.ohlcv_load(
pair=pair,
timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0,
candle_type=candle_type,
)
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
if len(data) > 0:
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data, candle_type=candle_type)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
"""
Ensure all values are float32 in the incoming dataframe.
:param df: Dataframe to be converted to float/int 32s
:return: Dataframe converted to float/int 32s
"""
logger.debug(f"Memory usage of dataframe is {df.memory_usage().sum() / 1024**2:.2f} MB")
df_dtypes = df.dtypes
for column, dtype in df_dtypes.items():
if column in ["open", "high", "low", "close", "volume"]:
continue
if dtype == np.float64:
df_dtypes[column] = np.float32
elif dtype == np.int64:
df_dtypes[column] = np.int32
df = df.astype(df_dtypes)
logger.debug(f"Memory usage after optimization is: {df.memory_usage().sum() / 1024**2:.2f} MB")
return df