mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
303 lines
10 KiB
Python
303 lines
10 KiB
Python
"""
|
|
Functions to convert data from one format to another
|
|
"""
|
|
|
|
import logging
|
|
from typing import Dict
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from pandas import DataFrame, to_datetime
|
|
|
|
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, Config
|
|
from freqtrade.enums import CandleType, TradingMode
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def ohlcv_to_dataframe(
|
|
ohlcv: list,
|
|
timeframe: str,
|
|
pair: str,
|
|
*,
|
|
fill_missing: bool = True,
|
|
drop_incomplete: bool = True,
|
|
) -> DataFrame:
|
|
"""
|
|
Converts a list with candle (OHLCV) data (in format returned by ccxt.fetch_ohlcv)
|
|
to a Dataframe
|
|
:param ohlcv: list with candle (OHLCV) data, as returned by exchange.async_get_candle_history
|
|
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
|
|
:param pair: Pair this data is for (used to warn if fillup was necessary)
|
|
:param fill_missing: fill up missing candles with 0 candles
|
|
(see ohlcv_fill_up_missing_data for details)
|
|
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
|
|
:return: DataFrame
|
|
"""
|
|
logger.debug(f"Converting candle (OHLCV) data to dataframe for pair {pair}.")
|
|
cols = DEFAULT_DATAFRAME_COLUMNS
|
|
df = DataFrame(ohlcv, columns=cols)
|
|
|
|
df["date"] = to_datetime(df["date"], unit="ms", utc=True)
|
|
|
|
# Some exchanges return int values for Volume and even for OHLC.
|
|
# Convert them since TA-LIB indicators used in the strategy assume floats
|
|
# and fail with exception...
|
|
df = df.astype(
|
|
dtype={
|
|
"open": "float",
|
|
"high": "float",
|
|
"low": "float",
|
|
"close": "float",
|
|
"volume": "float",
|
|
}
|
|
)
|
|
return clean_ohlcv_dataframe(
|
|
df, timeframe, pair, fill_missing=fill_missing, drop_incomplete=drop_incomplete
|
|
)
|
|
|
|
|
|
def clean_ohlcv_dataframe(
|
|
data: DataFrame, timeframe: str, pair: str, *, fill_missing: bool, drop_incomplete: bool
|
|
) -> DataFrame:
|
|
"""
|
|
Cleanse a OHLCV dataframe by
|
|
* Grouping it by date (removes duplicate tics)
|
|
* dropping last candles if requested
|
|
* Filling up missing data (if requested)
|
|
:param data: DataFrame containing candle (OHLCV) data.
|
|
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
|
|
:param pair: Pair this data is for (used to warn if fillup was necessary)
|
|
:param fill_missing: fill up missing candles with 0 candles
|
|
(see ohlcv_fill_up_missing_data for details)
|
|
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
|
|
:return: DataFrame
|
|
"""
|
|
# group by index and aggregate results to eliminate duplicate ticks
|
|
data = data.groupby(by="date", as_index=False, sort=True).agg(
|
|
{
|
|
"open": "first",
|
|
"high": "max",
|
|
"low": "min",
|
|
"close": "last",
|
|
"volume": "max",
|
|
}
|
|
)
|
|
# eliminate partial candle
|
|
if drop_incomplete:
|
|
data.drop(data.tail(1).index, inplace=True)
|
|
logger.debug("Dropping last candle")
|
|
|
|
if fill_missing:
|
|
return ohlcv_fill_up_missing_data(data, timeframe, pair)
|
|
else:
|
|
return data
|
|
|
|
|
|
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
|
|
"""
|
|
Fills up missing data with 0 volume rows,
|
|
using the previous close as price for "open", "high", "low" and "close", volume is set to 0
|
|
|
|
"""
|
|
from freqtrade.exchange import timeframe_to_resample_freq
|
|
|
|
ohlcv_dict = {"open": "first", "high": "max", "low": "min", "close": "last", "volume": "sum"}
|
|
resample_interval = timeframe_to_resample_freq(timeframe)
|
|
# Resample to create "NAN" values
|
|
df = dataframe.resample(resample_interval, on="date").agg(ohlcv_dict)
|
|
|
|
# Forwardfill close for missing columns
|
|
df["close"] = df["close"].ffill()
|
|
# Use close for "open, high, low"
|
|
df.loc[:, ["open", "high", "low"]] = df[["open", "high", "low"]].fillna(
|
|
value={
|
|
"open": df["close"],
|
|
"high": df["close"],
|
|
"low": df["close"],
|
|
}
|
|
)
|
|
df.reset_index(inplace=True)
|
|
len_before = len(dataframe)
|
|
len_after = len(df)
|
|
pct_missing = (len_after - len_before) / len_before if len_before > 0 else 0
|
|
if len_before != len_after:
|
|
message = (
|
|
f"Missing data fillup for {pair}, {timeframe}: "
|
|
f"before: {len_before} - after: {len_after} - {pct_missing:.2%}"
|
|
)
|
|
if pct_missing > 0.01:
|
|
logger.info(message)
|
|
else:
|
|
# Don't be verbose if only a small amount is missing
|
|
logger.debug(message)
|
|
return df
|
|
|
|
|
|
def trim_dataframe(
|
|
df: DataFrame, timerange, *, df_date_col: str = "date", startup_candles: int = 0
|
|
) -> DataFrame:
|
|
"""
|
|
Trim dataframe based on given timerange
|
|
:param df: Dataframe to trim
|
|
:param timerange: timerange (use start and end date if available)
|
|
:param df_date_col: Column in the dataframe to use as Date column
|
|
:param startup_candles: When not 0, is used instead the timerange start date
|
|
:return: trimmed dataframe
|
|
"""
|
|
if startup_candles:
|
|
# Trim candles instead of timeframe in case of given startup_candle count
|
|
df = df.iloc[startup_candles:, :]
|
|
else:
|
|
if timerange.starttype == "date":
|
|
df = df.loc[df[df_date_col] >= timerange.startdt, :]
|
|
if timerange.stoptype == "date":
|
|
df = df.loc[df[df_date_col] <= timerange.stopdt, :]
|
|
return df
|
|
|
|
|
|
def trim_dataframes(
|
|
preprocessed: Dict[str, DataFrame], timerange, startup_candles: int
|
|
) -> Dict[str, DataFrame]:
|
|
"""
|
|
Trim startup period from analyzed dataframes
|
|
:param preprocessed: Dict of pair: dataframe
|
|
:param timerange: timerange (use start and end date if available)
|
|
:param startup_candles: Startup-candles that should be removed
|
|
:return: Dict of trimmed dataframes
|
|
"""
|
|
processed: Dict[str, DataFrame] = {}
|
|
|
|
for pair, df in preprocessed.items():
|
|
trimed_df = trim_dataframe(df, timerange, startup_candles=startup_candles)
|
|
if not trimed_df.empty:
|
|
processed[pair] = trimed_df
|
|
else:
|
|
logger.warning(
|
|
f"{pair} has no data left after adjusting for startup candles, skipping."
|
|
)
|
|
return processed
|
|
|
|
|
|
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
|
|
"""
|
|
TODO: This should get a dedicated test
|
|
Gets order book list, returns dataframe with below format per suggested by creslin
|
|
-------------------------------------------------------------------
|
|
b_sum b_size bids asks a_size a_sum
|
|
-------------------------------------------------------------------
|
|
"""
|
|
cols = ["bids", "b_size"]
|
|
|
|
bids_frame = DataFrame(bids, columns=cols)
|
|
# add cumulative sum column
|
|
bids_frame["b_sum"] = bids_frame["b_size"].cumsum()
|
|
cols2 = ["asks", "a_size"]
|
|
asks_frame = DataFrame(asks, columns=cols2)
|
|
# add cumulative sum column
|
|
asks_frame["a_sum"] = asks_frame["a_size"].cumsum()
|
|
|
|
frame = pd.concat(
|
|
[
|
|
bids_frame["b_sum"],
|
|
bids_frame["b_size"],
|
|
bids_frame["bids"],
|
|
asks_frame["asks"],
|
|
asks_frame["a_size"],
|
|
asks_frame["a_sum"],
|
|
],
|
|
axis=1,
|
|
keys=["b_sum", "b_size", "bids", "asks", "a_size", "a_sum"],
|
|
)
|
|
# logger.info('order book %s', frame )
|
|
return frame
|
|
|
|
|
|
def convert_ohlcv_format(
|
|
config: Config,
|
|
convert_from: str,
|
|
convert_to: str,
|
|
erase: bool,
|
|
):
|
|
"""
|
|
Convert OHLCV from one format to another
|
|
:param config: Config dictionary
|
|
:param convert_from: Source format
|
|
:param convert_to: Target format
|
|
:param erase: Erase source data (does not apply if source and target format are identical)
|
|
"""
|
|
from freqtrade.data.history import get_datahandler
|
|
|
|
src = get_datahandler(config["datadir"], convert_from)
|
|
trg = get_datahandler(config["datadir"], convert_to)
|
|
timeframes = config.get("timeframes", [config.get("timeframe")])
|
|
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
|
|
|
|
candle_types = [
|
|
CandleType.from_string(ct)
|
|
for ct in config.get("candle_types", [c.value for c in CandleType])
|
|
]
|
|
logger.info(candle_types)
|
|
paircombs = src.ohlcv_get_available_data(config["datadir"], TradingMode.SPOT)
|
|
paircombs.extend(src.ohlcv_get_available_data(config["datadir"], TradingMode.FUTURES))
|
|
|
|
if "pairs" in config:
|
|
# Filter pairs
|
|
paircombs = [comb for comb in paircombs if comb[0] in config["pairs"]]
|
|
|
|
if "timeframes" in config:
|
|
paircombs = [comb for comb in paircombs if comb[1] in config["timeframes"]]
|
|
paircombs = [comb for comb in paircombs if comb[2] in candle_types]
|
|
|
|
paircombs = sorted(paircombs, key=lambda x: (x[0], x[1], x[2].value))
|
|
|
|
formatted_paircombs = "\n".join(
|
|
[f"{pair}, {timeframe}, {candle_type}" for pair, timeframe, candle_type in paircombs]
|
|
)
|
|
|
|
logger.info(
|
|
f"Converting candle (OHLCV) data for the following pair combinations:\n"
|
|
f"{formatted_paircombs}"
|
|
)
|
|
for pair, timeframe, candle_type in paircombs:
|
|
data = src.ohlcv_load(
|
|
pair=pair,
|
|
timeframe=timeframe,
|
|
timerange=None,
|
|
fill_missing=False,
|
|
drop_incomplete=False,
|
|
startup_candles=0,
|
|
candle_type=candle_type,
|
|
)
|
|
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
|
|
if len(data) > 0:
|
|
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data, candle_type=candle_type)
|
|
if erase and convert_from != convert_to:
|
|
logger.info(f"Deleting source data for {pair} / {timeframe}")
|
|
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
|
|
|
|
|
|
def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
|
|
"""
|
|
Ensure all values are float32 in the incoming dataframe.
|
|
:param df: Dataframe to be converted to float/int 32s
|
|
:return: Dataframe converted to float/int 32s
|
|
"""
|
|
|
|
logger.debug(f"Memory usage of dataframe is {df.memory_usage().sum() / 1024**2:.2f} MB")
|
|
|
|
df_dtypes = df.dtypes
|
|
for column, dtype in df_dtypes.items():
|
|
if column in ["open", "high", "low", "close", "volume"]:
|
|
continue
|
|
if dtype == np.float64:
|
|
df_dtypes[column] = np.float32
|
|
elif dtype == np.int64:
|
|
df_dtypes[column] = np.int32
|
|
df = df.astype(df_dtypes)
|
|
|
|
logger.debug(f"Memory usage after optimization is: {df.memory_usage().sum() / 1024**2:.2f} MB")
|
|
|
|
return df
|