freqtrade_origin/freqtrade/data/metrics.py
2024-05-15 07:04:36 +02:00

379 lines
14 KiB
Python

import logging
import math
from dataclasses import dataclass
from datetime import datetime
from typing import Dict, Tuple
import numpy as np
import pandas as pd
logger = logging.getLogger(__name__)
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
"""
Calculate market change based on "column".
Calculation is done by taking the first non-null and the last non-null element of each column
and calculating the pctchange as "(last - first) / first".
Then the results per pair are combined as mean.
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return:
"""
tmp_means = []
for pair, df in data.items():
start = df[column].dropna().iloc[0]
end = df[column].dropna().iloc[-1]
tmp_means.append((end - start) / start)
return float(np.mean(tmp_means))
def combine_dataframes_by_column(
data: Dict[str, pd.DataFrame], column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key.
:raise: ValueError if no data is provided.
"""
if not data:
raise ValueError("No data provided.")
df_comb = pd.concat(
[data[pair].set_index("date").rename({column: pair}, axis=1)[pair] for pair in data], axis=1
)
return df_comb
def combined_dataframes_with_rel_mean(
data: Dict[str, pd.DataFrame], fromdt: datetime, todt: datetime, column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = combine_dataframes_by_column(data, column)
# Trim dataframes to the given timeframe
df_comb = df_comb.iloc[(df_comb.index >= fromdt) & (df_comb.index < todt)]
df_comb["count"] = df_comb.count(axis=1)
df_comb["mean"] = df_comb.mean(axis=1)
df_comb["rel_mean"] = df_comb["mean"].pct_change().fillna(0).cumsum()
return df_comb[["mean", "rel_mean", "count"]]
def combine_dataframes_with_mean(
data: Dict[str, pd.DataFrame], column: str = "close"
) -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param data: Dict of Dataframes, dict key should be pair.
:param column: Column in the original dataframes to use
:return: DataFrame with the column renamed to the dict key, and a column
named mean, containing the mean of all pairs.
:raise: ValueError if no data is provided.
"""
df_comb = combine_dataframes_by_column(data, column)
df_comb["mean"] = df_comb.mean(axis=1)
return df_comb
def create_cum_profit(
df: pd.DataFrame, trades: pd.DataFrame, col_name: str, timeframe: str
) -> pd.DataFrame:
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
from freqtrade.exchange import timeframe_to_resample_freq
timeframe_freq = timeframe_to_resample_freq(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(timeframe_freq, on="close_date")[["profit_abs"]].sum()
df.loc[:, col_name] = _trades_sum["profit_abs"].cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
# FFill to get continuous
df[col_name] = df[col_name].ffill()
return df
def _calc_drawdown_series(
profit_results: pd.DataFrame, *, date_col: str, value_col: str, starting_balance: float
) -> pd.DataFrame:
max_drawdown_df = pd.DataFrame()
max_drawdown_df["cumulative"] = profit_results[value_col].cumsum()
max_drawdown_df["high_value"] = max_drawdown_df["cumulative"].cummax()
max_drawdown_df["drawdown"] = max_drawdown_df["cumulative"] - max_drawdown_df["high_value"]
max_drawdown_df["date"] = profit_results.loc[:, date_col]
if starting_balance:
cumulative_balance = starting_balance + max_drawdown_df["cumulative"]
max_balance = starting_balance + max_drawdown_df["high_value"]
max_drawdown_df["drawdown_relative"] = (max_balance - cumulative_balance) / max_balance
else:
# NOTE: This is not completely accurate,
# but might good enough if starting_balance is not available
max_drawdown_df["drawdown_relative"] = (
max_drawdown_df["high_value"] - max_drawdown_df["cumulative"]
) / max_drawdown_df["high_value"]
return max_drawdown_df
def calculate_underwater(
trades: pd.DataFrame,
*,
date_col: str = "close_date",
value_col: str = "profit_ratio",
starting_balance: float = 0.0,
):
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
high and low time and high and low value.
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results, date_col=date_col, value_col=value_col, starting_balance=starting_balance
)
return max_drawdown_df
@dataclass()
class DrawDownResult:
drawdown_abs: float = 0.0
high_date: pd.Timestamp = None
low_date: pd.Timestamp = None
high_value: float = 0.0
low_value: float = 0.0
relative_account_drawdown: float = 0.0
def calculate_max_drawdown(
trades: pd.DataFrame,
*,
date_col: str = "close_date",
value_col: str = "profit_abs",
starting_balance: float = 0,
relative: bool = False,
) -> DrawDownResult:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
:return: DrawDownResult object
with absolute max drawdown, high and low time and high and low value,
and the relative account drawdown
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
profit_results = trades.sort_values(date_col).reset_index(drop=True)
max_drawdown_df = _calc_drawdown_series(
profit_results, date_col=date_col, value_col=value_col, starting_balance=starting_balance
)
idxmin = (
max_drawdown_df["drawdown_relative"].idxmax()
if relative
else max_drawdown_df["drawdown"].idxmin()
)
if idxmin == 0:
raise ValueError("No losing trade, therefore no drawdown.")
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]["high_value"].idxmax(), date_col]
low_date = profit_results.loc[idxmin, date_col]
high_val = max_drawdown_df.loc[
max_drawdown_df.iloc[:idxmin]["high_value"].idxmax(), "cumulative"
]
low_val = max_drawdown_df.loc[idxmin, "cumulative"]
max_drawdown_rel = max_drawdown_df.loc[idxmin, "drawdown_relative"]
return DrawDownResult(
drawdown_abs=abs(max_drawdown_df.loc[idxmin, "drawdown"]),
high_date=high_date,
low_date=low_date,
high_value=high_val,
low_value=low_val,
relative_account_drawdown=max_drawdown_rel,
)
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:
"""
Calculate min/max cumsum of trades, to show if the wallet/stake amount ratio is sane
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
:param starting_balance: Add starting balance to results, to show the wallets high / low points
:return: Tuple (float, float) with cumsum of profit_abs
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
raise ValueError("Trade dataframe empty.")
csum_df = pd.DataFrame()
csum_df["sum"] = trades["profit_abs"].cumsum()
csum_min = csum_df["sum"].min() + starting_balance
csum_max = csum_df["sum"].max() + starting_balance
return csum_min, csum_max
def calculate_cagr(days_passed: int, starting_balance: float, final_balance: float) -> float:
"""
Calculate CAGR
:param days_passed: Days passed between start and ending balance
:param starting_balance: Starting balance
:param final_balance: Final balance to calculate CAGR against
:return: CAGR
"""
if final_balance < 0:
# With leveraged trades, final_balance can become negative.
return 0
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
def calculate_expectancy(trades: pd.DataFrame) -> Tuple[float, float]:
"""
Calculate expectancy
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:return: expectancy, expectancy_ratio
"""
expectancy = 0
expectancy_ratio = 100
if len(trades) > 0:
winning_trades = trades.loc[trades["profit_abs"] > 0]
losing_trades = trades.loc[trades["profit_abs"] < 0]
profit_sum = winning_trades["profit_abs"].sum()
loss_sum = abs(losing_trades["profit_abs"].sum())
nb_win_trades = len(winning_trades)
nb_loss_trades = len(losing_trades)
average_win = (profit_sum / nb_win_trades) if nb_win_trades > 0 else 0
average_loss = (loss_sum / nb_loss_trades) if nb_loss_trades > 0 else 0
winrate = nb_win_trades / len(trades)
loserate = nb_loss_trades / len(trades)
expectancy = (winrate * average_win) - (loserate * average_loss)
if average_loss > 0:
risk_reward_ratio = average_win / average_loss
expectancy_ratio = ((1 + risk_reward_ratio) * winrate) - 1
return expectancy, expectancy_ratio
def calculate_sortino(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate sortino
:param trades: DataFrame containing trades (requires columns profit_abs)
:return: sortino
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades["profit_abs"] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
down_stdev = np.std(trades.loc[trades["profit_abs"] < 0, "profit_abs"] / starting_balance)
if down_stdev != 0 and not np.isnan(down_stdev):
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
sortino_ratio = -100
# print(expected_returns_mean, down_stdev, sortino_ratio)
return sortino_ratio
def calculate_sharpe(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate sharpe
:param trades: DataFrame containing trades (requires column profit_abs)
:return: sharpe
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades["profit_abs"] / starting_balance
days_period = max(1, (max_date - min_date).days)
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if up_stdev != 0:
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -100
# print(expected_returns_mean, up_stdev, sharp_ratio)
return sharp_ratio
def calculate_calmar(
trades: pd.DataFrame, min_date: datetime, max_date: datetime, starting_balance: float
) -> float:
"""
Calculate calmar
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:return: calmar
"""
if (len(trades) == 0) or (min_date is None) or (max_date is None) or (min_date == max_date):
return 0
total_profit = trades["profit_abs"].sum() / starting_balance
days_period = max(1, (max_date - min_date).days)
# adding slippage of 0.1% per trade
# total_profit = total_profit - 0.0005
expected_returns_mean = total_profit / days_period * 100
# calculate max drawdown
try:
drawdown = calculate_max_drawdown(
trades, value_col="profit_abs", starting_balance=starting_balance
)
max_drawdown = drawdown.relative_account_drawdown
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * math.sqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -100
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return calmar_ratio